Hansen S B, Shlyaptseva A S
Physics Department/220, University of Nevada, Reno, Nevada 89557, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036402. doi: 10.1103/PhysRevE.70.036402. Epub 2004 Sep 13.
This paper presents the results of a broad investigation into the effects of the electron energy distribution function on the predictions of nonlocal thermodynamic equilibrium collisional-radiative atomic kinetics models. The effects of non-Maxwellian and suprathermal ("hot") electron distributions on collisional rates (including three-body recombination) are studied. It is shown that most collisional rates are fairly insensitive to the functional form and the characteristic (central or average) energy of the electron distribution function as long as the characteristic energy is larger than the threshold energy for the collisional process. Collisional excitation and ionization rates are, however, highly sensitive to the number of hot electrons. This permits the development of robust spectroscopic diagnostics that can be used to characterize the electron density, bulk electron temperature, and hot electron fraction of plasmas with nonequilibrium electron distribution functions. Hot electrons are shown to increase and spread out plasma charge state distributions, amplify the intensities of emission lines fed by direct collisional excitation and radiative cascades, and alter the structure of satellite features in both K - and L -shell spectra. The characteristic energy, functional form, and spatial properties of hot electron distributions in plasmas are open to characterization through their effects on high-energy continuum and line emission and on the polarization of spectral lines.
本文介绍了一项广泛调查的结果,该调查研究了电子能量分布函数对非局部热力学平衡碰撞辐射原子动力学模型预测的影响。研究了非麦克斯韦分布和超热(“热”)电子分布对碰撞率(包括三体复合)的影响。结果表明,只要特征能量大于碰撞过程的阈值能量,大多数碰撞率对电子分布函数的函数形式和特征(中心或平均)能量相当不敏感。然而,碰撞激发率和电离率对热电子的数量高度敏感。这使得能够开发出强大的光谱诊断方法,用于表征具有非平衡电子分布函数的等离子体的电子密度、体电子温度和热电子分数。研究表明,热电子会增加并扩展等离子体电荷态分布,放大由直接碰撞激发和辐射级联产生的发射线强度,并改变K壳层和L壳层光谱中卫星特征的结构。等离子体中热电子分布的特征能量、函数形式和空间特性可以通过它们对高能连续谱和线发射以及谱线极化的影响来表征。