Chaumet Patrick C, Sentenac Anne, Rahmani Adel
Institut Fresnel (UMR 6133), Universitié d'Aix-Marseille III, Av. Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036606. doi: 10.1103/PhysRevE.70.036606. Epub 2004 Sep 17.
In the coupled dipole method, a three-dimensional scattering object is discretized over a lattice into a set of polarizable units that are coupled self-consistently. Starting from the volume integral equation for the field, we show that performing the integration of the free-space field susceptibility tensor over the lattice cell dramatically improves the accuracy of the method when the permittivity of the object is large. This integration, done without any approximation, allows us to define a prescription for the polarizability used in the coupled dipole method. Our derivation is not restricted to any particular shape of the scatterer or to a cubic discretization lattice.
在耦合偶极子方法中,一个三维散射物体在晶格上被离散化为一组可极化单元,这些单元进行自洽耦合。从场的体积积分方程出发,我们表明,当物体的介电常数很大时,在晶格单元上对自由空间场磁化率张量进行积分可显著提高该方法的精度。这种积分无需任何近似,使我们能够为耦合偶极子方法中使用的极化率定义一个公式。我们的推导不限于散射体的任何特定形状或立方离散晶格。