Florescu Lucia, John Sajeev
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036607. doi: 10.1103/PhysRevE.70.036607. Epub 2004 Sep 20.
We study the dynamics of lasing from photonic paints excited by short, localized, optical pulses, using a time-dependent diffusion model for light propagating in the medium containing active atoms. The full time-dependent, nonadiabatic nonlinear response of the atomic system to the local optical field intensity is described using the Einstein rate equations for absorption and emission of light. Solving the time-dependent diffusion equation for the light intensity in the medium with nonlinear gain and loss, we derive detailed information on the spectral, spatial, and temporal properties of the emitted laser light. Our model recaptures the effects of scatterers to narrow the emission spectral linewidth and to narrow the emitted pulse duration, at a specific threshold pump intensity. Our model also describes how this threshold pump intensity decreases with scatterer density and excitation spot diameter, in excellent agreement with experimental results.
我们使用一个随时间变化的扩散模型来研究短的、局域的光脉冲激发的光子涂料的激光动力学,该模型用于描述光在含有活性原子的介质中的传播。利用爱因斯坦光吸收和发射速率方程来描述原子系统对局部光场强度的全时变、非绝热非线性响应。通过求解具有非线性增益和损耗的介质中光强的随时间变化的扩散方程,我们得到了关于发射激光的光谱、空间和时间特性的详细信息。我们的模型重现了散射体在特定阈值泵浦强度下使发射光谱线宽变窄和发射脉冲持续时间变窄的效应。我们的模型还描述了该阈值泵浦强度如何随散射体密度和激发光斑直径减小,这与实验结果非常吻合。