Suppr超能文献

社交网络的匹配模型。

Assortative model for social networks.

作者信息

Catanzaro Michele, Caldarelli Guido, Pietronero Luciano

机构信息

INFM UdR ROMA 1 Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):037101. doi: 10.1103/PhysRevE.70.037101. Epub 2004 Sep 3.

Abstract

In this Brief Report we present a version of a network growth model, generalized in order to describe the behavior of social networks. The case of study considered is the preprint archive at cul.arxiv.org. Each node corresponds to a scientist, and a link is present whenever two authors wrote a paper together. This graph is a nice example of degree-assortative network, that is, to say a network where sites with similar degree are connected to each other. The model presented is one of the few able to reproduce such behavior, giving some insight on the microscopic dynamics at the basis of the graph structure.

摘要

在本简要报告中,我们展示了一个网络增长模型的版本,该模型经过推广以描述社交网络的行为。所考虑的研究案例是cul.arxiv.org上的预印本存档。每个节点对应一位科学家,当两位作者共同撰写一篇论文时就存在一条链接。这个图是度关联网络的一个很好的例子,也就是说,一个具有相似度数的节点相互连接的网络。所提出的模型是少数能够重现这种行为的模型之一,它为图结构基础上的微观动态提供了一些见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验