Jan Kowalski Stefan
Poznań University of Technology, Institute of Technology and Chemical Engineering, pl. Marii Skłodowskiej Curie 2, 60-965 Poznań, Poland.
Ultrasonics. 2004 Dec;43(2):101-11. doi: 10.1016/j.ultras.2004.04.004.
A theory of propagation of stress waves in diluted and densified suspensions is developed to make the theoretical basis for analysis of ultrasonic waves through these media. The formulae for the phase velocity and the attenuation coefficient are determined as the function of wave frequency and the suspension structure parameter, which is the volume or mass fraction of the solid phase. These formulae can be use, after suitable calibration, for determination of the solid volume fraction in diluted suspensions, and the solid mass fraction or the water content in densified suspensions, that is, parameters that characterize the structure of a suspension. These structure parameters can be determined by measuring the transition time of ultrasonic wave through a given distance of suspension. The phase velocity dispersion curves and the attenuation coefficients determined theoretically and experimentally are plotted as a function of the volume fraction of the solid phase for dilute suspension, or the solid mass fraction for densified suspension.
建立了应力波在稀释和致密悬浮液中传播的理论,为分析超声波在这些介质中的传播提供理论基础。相速度和衰减系数的公式被确定为波频率和悬浮结构参数的函数,悬浮结构参数即固相的体积或质量分数。经过适当校准后,这些公式可用于确定稀释悬浮液中的固体体积分数、致密悬浮液中的固体质量分数或含水量,即表征悬浮液结构的参数。这些结构参数可以通过测量超声波在给定距离悬浮液中的传播时间来确定。理论上和实验上确定的相速度色散曲线和衰减系数被绘制为稀释悬浮液中固相体积分数或致密悬浮液中固体质量分数的函数。