Ding Feng, Buldyrev Sergey V, Dokholyan Nikolay V
Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, USA.
Biophys J. 2005 Jan;88(1):147-55. doi: 10.1529/biophysj.104.046375. Epub 2004 Nov 8.
We develop a coarse-grained protein model with a simplified amino acid interaction potential. Using this model, we perform discrete molecular dynamics folding simulations of a small 20-residue protein--Trp-cage--from a fully extended conformation. We demonstrate the ability of the Trp-cage model to consistently reach conformations within 2-angstroms backbone root-mean-square distance from the corresponding NMR structures. The minimum root-mean-square distance of Trp-cage conformations in simulations can be <1 angstroms. Our findings suggest that, at least in the case of Trp-cage, a detailed all-atom protein model with a molecular mechanics force field is not necessary to reach the native state of a protein. Our results also suggest that the success of folding Trp-cage in our simulations and in the reported all-atom molecular mechanics simulation studies may be mainly due to the special stabilizing features specific to this miniprotein.
我们开发了一种具有简化氨基酸相互作用势的粗粒度蛋白质模型。使用该模型,我们对一个由20个残基组成的小蛋白质——色氨酸笼(Trp-cage)——从完全伸展构象进行了离散分子动力学折叠模拟。我们证明了色氨酸笼模型能够始终达到与相应核磁共振(NMR)结构的主链均方根距离在2埃以内的构象。模拟中色氨酸笼构象的最小均方根距离可以小于1埃。我们的研究结果表明,至少在色氨酸笼的情况下,使用分子力学力场的详细全原子蛋白质模型对于达到蛋白质的天然状态并非必要。我们的结果还表明,在我们的模拟以及已报道的全原子分子力学模拟研究中色氨酸笼折叠成功可能主要归因于这种微型蛋白质特有的特殊稳定特征。