Winkler Robert L, Smith James E
Fuqua School of Business, Duke University, Durham, North Carolina 27708-0120, USA.
Med Decis Making. 2004 Nov-Dec;24(6):654-8. doi: 10.1177/0272989X04271045.
There is confusion in the medical decision-making literature about how to handle uncertainty in medical tests. In this article, the authors consider the situation in which there is uncertainty about the pretest probability of a disease in a patient as well as uncertainty about the sensitivity and specificity of a diagnostic test for that disease. They discuss how to calculate posttest probabilities of a disease under such uncertainty and how to calculate a distribution for a posttest probability. They show that given certain independence assumptions, uncertainty about these parameters need not complicate the calculation of patient positive predictive values: One can simply use the expected values of the parameters in the standard Bayesian formula for posttest probabilities. The discussion on how to calculate distributions for positive predictive values corrects a common and potentially important error.
医学决策文献中对于如何处理医学检验中的不确定性存在混淆。在本文中,作者们考虑了这样一种情况:患者疾病的检验前概率存在不确定性,同时针对该疾病的诊断检验的敏感度和特异度也存在不确定性。他们讨论了在这种不确定性下如何计算疾病的检验后概率,以及如何计算检验后概率的分布。他们表明,在给定某些独立性假设的情况下,这些参数的不确定性并不一定会使患者阳性预测值的计算复杂化:人们可以简单地在计算检验后概率的标准贝叶斯公式中使用参数的期望值。关于如何计算阳性预测值分布的讨论纠正了一个常见且可能很重要的错误。