Hattotuwagama Channa K, Guan Pingping, Doytchinova Irini A, Flower Darren R
Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG20 7NN, UK.
Org Biomol Chem. 2004 Nov 21;2(22):3274-83. doi: 10.1039/B409656H. Epub 2004 Sep 16.
Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).
定量构效关系(QSAR)分析是现代信息学科的主要基石。基于QSAR技术的肽 - 主要组织相容性复合体(MHC)结合亲和力预测计算模型,现已成为现代计算免疫疫苗学的重要组成部分。从历史上看,此类方法一直围绕半定性的分类方法构建,但现在这些方法正逐渐被定量回归方法所取代。加法方法是一种用于肽 - 蛋白质亲和力定量预测的成熟免疫信息学技术,在此用于确定三种小鼠I类MHC等位基因:H2-D(b)、H2-K(b)和H2-K(k)的肽结合特异性的序列依赖性。如我们所示,就可靠性而言,所得模型代表了对现有方法的重大改进。它们可用于准确预测T细胞表位,并且可在网上免费获取(http://www.jenner.ac.uk/MHCPred)。