Suppr超能文献

基于原型网络层次分类预测折叠新颖性。

Predicting fold novelty based on ProtoNet hierarchical classification.

作者信息

Kifer Ilona, Sasson Ori, Linial Michal

机构信息

Department of Biological Chemistry, Institute of Life Sciences Jerusalem 91904, Israel.

出版信息

Bioinformatics. 2005 Apr 1;21(7):1020-7. doi: 10.1093/bioinformatics/bti135. Epub 2004 Nov 11.

Abstract

MOTIVATION

Structural genomics projects aim to solve a large number of protein structures with the ultimate objective of representing the entire protein space. The computational challenge is to identify and prioritize a small set of proteins with new, currently unknown, superfamilies or folds.

RESULTS

We develop a method that assigns each protein a likelihood of it belonging to a new, yet undetermined, structural superfamily. The method relies on a variant of ProtoNet, an automatic hierarchical classification scheme of all protein sequences from SwissProt. Our results show that proteins that are remote from solved structures in the ProtoNet hierarchy are more likely to belong to new superfamilies. The results are validated against SCOP releases from recent years that account for about half of the solved structures known to date. We show that our new method and the representation of ProtoNet are superior in detecting new targets, compared to our previous method using ProtoMap classification. Furthermore, our method outperforms PSI-BLAST search in detecting potential new superfamilies.

摘要

动机

结构基因组学项目旨在解析大量蛋白质结构,最终目标是涵盖整个蛋白质空间。计算方面的挑战在于识别一小部分具有新的、目前未知的超家族或折叠结构的蛋白质,并对其进行优先级排序。

结果

我们开发了一种方法,可为每个蛋白质赋予其属于一个新的、尚未确定的结构超家族的可能性。该方法基于ProtoNet的一个变体,ProtoNet是对来自SwissProt的所有蛋白质序列进行自动层次分类的方案。我们的结果表明,在ProtoNet层次结构中与已解析结构距离较远的蛋白质更有可能属于新的超家族。我们的结果通过近年来的SCOP版本进行了验证,这些版本涵盖了迄今为止已知已解析结构的大约一半。我们表明,与我们之前使用ProtoMap分类的方法相比,我们的新方法和ProtoNet的表示在检测新靶点方面更具优势。此外,在检测潜在的新超家族方面,我们的方法优于PSI-BLAST搜索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验