Bouguila Nizar, Ziou Djemel, Vaillancourt Jean
Département d'Informatique, Université de Sherbrooke, QC, Canada.
IEEE Trans Image Process. 2004 Nov;13(11):1533-43. doi: 10.1109/tip.2004.834664.
This paper presents an unsupervised algorithm for learning a finite mixture model from multivariate data. This mixture model is based on the Dirichlet distribution, which offers high flexibility for modeling data. The proposed approach for estimating the parameters of a Dirichlet mixture is based on the maximum likelihood (ML) and Fisher scoring methods. Experimental results are presented for the following applications: estimation of artificial histograms, summarization of image databases for efficient retrieval, and human skin color modeling and its application to skin detection in multimedia databases.
本文提出了一种用于从多变量数据中学习有限混合模型的无监督算法。该混合模型基于狄利克雷分布,它为数据建模提供了高度的灵活性。所提出的估计狄利克雷混合模型参数的方法基于最大似然(ML)和费舍尔评分方法。给出了针对以下应用的实验结果:人工直方图估计、用于高效检索的图像数据库汇总、人类肤色建模及其在多媒体数据库中皮肤检测的应用。