Suppr超能文献

生物医学文献中的术语识别。

Term identification in the biomedical literature.

作者信息

Krauthammer Michael, Nenadic Goran

机构信息

Department of Biomedical Informatics, Columbia Genome Center, Columbia University, New York, USA.

出版信息

J Biomed Inform. 2004 Dec;37(6):512-26. doi: 10.1016/j.jbi.2004.08.004.

Abstract

Sophisticated information technologies are needed for effective data acquisition and integration from a growing body of the biomedical literature. Successful term identification is key to getting access to the stored literature information, as it is the terms (and their relationships) that convey knowledge across scientific articles. Due to the complexities of a dynamically changing biomedical terminology, term identification has been recognized as the current bottleneck in text mining, and--as a consequence--has become an important research topic both in natural language processing and biomedical communities. This article overviews state-of-the-art approaches in term identification. The process of identifying terms is analysed through three steps: term recognition, term classification, and term mapping. For each step, main approaches and general trends, along with the major problems, are discussed. By assessing previous work in context of the overall term identification process, the review also tries to delineate needs for future work in the field.

摘要

需要先进的信息技术才能从不断增长的生物医学文献中有效地获取和整合数据。成功的术语识别是获取存储的文献信息的关键,因为正是术语(及其关系)在科学文章之间传递知识。由于动态变化的生物医学术语的复杂性,术语识别已被公认为是文本挖掘中的当前瓶颈,因此,它已成为自然语言处理和生物医学领域的一个重要研究课题。本文概述了术语识别方面的最新方法。术语识别过程通过三个步骤进行分析:术语识别、术语分类和术语映射。针对每个步骤,讨论了主要方法和总体趋势以及主要问题。通过在整个术语识别过程的背景下评估先前的工作,本综述还试图勾勒出该领域未来工作的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验