Suppr超能文献

HLA I类抗原加工途径的虚拟模型。

Virtual models of the HLA class I antigen processing pathway.

作者信息

Petrovsky Nikolai, Brusic Vladimir

机构信息

Autoimmunity Research Unit, The Canberra Hospital, ACT 2606, Australia.

出版信息

Methods. 2004 Dec;34(4):429-35. doi: 10.1016/j.ymeth.2004.06.005.

Abstract

Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class I binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify HLA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies.

摘要

细胞毒性CD8 T细胞的抗原识别依赖于MHC I类抗原加工过程中的多个关键步骤,包括蛋白酶体切割、TAP转运至内质网以及MHC I类结合。基于与这些步骤中的每一步相关的大量实验数据,现在有能力以高度准确性对单个抗原加工步骤进行建模。本文展示了将单个抗原加工步骤的模型,例如蛋白酶体切割、TAP转运和MHC结合,整合在一起以构建功能途径的高信息量模型的潜力。特别是,我们展示了如何使用TAP转运的人工神经网络模型挖掘HLA结合数据库,以识别由TAP转运的HLA结合肽。这种抗原加工的整合模型提供了独特的见解,即HLA I类等位基因显然构成两个不同的类别:那些对肽加载TAP高效的(HLA - B27、- A3和 - A24)和那些TAP低效的(HLA - A2、- B7和 - B8)。因此,可以使用这个整合模型就抗原加工生成新的假设,并且这些假设现在能够通过实验进行检验。该模型证实了构建虚拟免疫系统的可行性,据此抗原加工中的每个额外步骤都被纳入单个模块化模型。准确的抗原加工模型对基础免疫学研究以及基于肽的疫苗和其他免疫疗法的设计都有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验