Wijsman Ellen M, Yu Dongmei
Division of Medical Genetics, Department of Biostatistics, University of Washington, Box 357720, Seattle, WA 98195-7720, USA.
Mol Biotechnol. 2004 Nov;28(3):205-26. doi: 10.1385/MB:28:3:205.
One of the most challenging areas in human genetics is the dissection of quantitative traits. In this context, the efficient use of available data is important, including, when possible, use of large pedigrees and many markers for gene mapping. In addition, methods that jointly perform linkage analysis and estimation of the trait model are appealing because they combine the advantages of a model-based analysis with the advantages of methods that do not require prespecification of model parameters for linkage analysis. Here we review a Markov chain Monte Carlo approach for such joint linkage and segregation analysis, which allows analysis of oligogenic traits in the context of multipoint linkage analysis of large pedigrees. We provide an outline for practitioners of the salient features of the method, interpretation of the results, effect of violation of assumptions, and an example analysis of a two-locus trait to illustrate the method.
人类遗传学中最具挑战性的领域之一是对数量性状的剖析。在这种情况下,有效利用现有数据很重要,包括在可能的情况下,利用大型家系和许多标记进行基因定位。此外,联合进行连锁分析和性状模型估计的方法很有吸引力,因为它们将基于模型分析的优点与无需预先设定连锁分析模型参数的方法的优点结合起来。在这里,我们回顾一种用于这种联合连锁和分离分析的马尔可夫链蒙特卡罗方法,该方法允许在大型家系的多点连锁分析背景下分析寡基因性状。我们为从业者提供了该方法的显著特征、结果解释、假设违背的影响的概述,以及对一个双基因座性状的示例分析以说明该方法。