Ajay Sriram M, Bhalla Upinder S
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vignan Kendra Campus, Bangalore 560065, India.
Eur J Neurosci. 2004 Nov;20(10):2671-80. doi: 10.1111/j.1460-9568.2004.03725.x.
Stimulus reinforcement strengthens learning. Intervals between reinforcement affect both the kind of learning that occurs and the amount of learning. Stimuli spaced by a few minutes result in more effective learning than when massed together. There are several synaptic correlates of repeated stimuli, such as different kinds of plasticity and the amplitude of synaptic change. Here we study the role of signalling pathways in the synapse on this selectivity for spaced stimuli. Using the in vitro hippocampal slice technique we monitored long-term potentiation (LTP) amplitude in CA1 for repeated 100-Hz, 1-s tetani. We observe the highest LTP levels when the inter-tetanus interval is 5-10 min. We tested biochemical activity in the slice following the same stimuli, and found that extracellular signal-regulated kinase type II (ERKII) but not CaMKII exhibits a peak at about 10 min. When calcium influx into the slice is buffered using AM-ester calcium dyes, amplitude of the physiological and biochemical response is reduced, but the timing is not shifted. We have previously used computer simulations of synaptic signalling to predict such temporal tuning from signalling pathways. In the current study we consider feedback and feedforward models that exhibit temporal tuning consistent with our experiments. We find that a model incorporating post-stimulus build-up of PKM zeta acting upstream of mitogen-activated protein kinase is sufficient to explain the observed temporal tuning. On the basis of these combined experimental and modelling results we propose that the dynamics of PKM activation and ERKII signalling may provide a mechanism for functionally important forms of synaptic pattern selectivity.
刺激强化会增强学习。强化之间的间隔会影响所发生的学习类型以及学习量。间隔几分钟的刺激比集中在一起时能产生更有效的学习。重复刺激存在多种突触相关因素,例如不同类型的可塑性和突触变化的幅度。在此,我们研究突触中的信号通路在对间隔刺激的这种选择性方面所起的作用。利用体外海马切片技术,我们监测了CA1区中重复100赫兹、1秒强直刺激时的长时程增强(LTP)幅度。我们观察到当强直刺激间隔为5 - 10分钟时,LTP水平最高。我们在相同刺激后测试了切片中的生化活性,发现细胞外信号调节激酶II型(ERKII)而非CaMKII在约10分钟时出现峰值。当使用AM - 酯钙染料缓冲钙流入切片时,生理和生化反应的幅度降低,但时间未发生偏移。我们之前使用突触信号的计算机模拟来从信号通路预测这种时间调谐。在当前研究中,我们考虑了与我们的实验一致的表现出时间调谐的反馈和前馈模型。我们发现,一个包含在丝裂原活化蛋白激酶上游起作用的PKM ζ刺激后积累的模型足以解释所观察到的时间调谐。基于这些综合的实验和建模结果,我们提出PKM激活和ERKII信号的动力学可能为功能上重要的突触模式选择性形式提供一种机制。