Suppr超能文献

利用异质性预测抑制性网络模型特征。

Using heterogeneity to predict inhibitory network model characteristics.

作者信息

Skinner F K, Chung J Y J, Ncube I, Murray P A, Campbell S A

机构信息

Toronto Western Research Institute, University Health Network, 399 Bathurst St., MP13-317, Toronto, Ontario M5T 2S8, Canada.

出版信息

J Neurophysiol. 2005 Apr;93(4):1898-907. doi: 10.1152/jn.00619.2004. Epub 2004 Nov 17.

Abstract

From modeling studies it has been known for >10 years that purely inhibitory networks can produce synchronous output given appropriate balances of intrinsic and synaptic parameters. Several experimental studies indicate that synchronous activity produced by inhibitory networks is critical to the production of population rhythms associated with various behavioral states. Heterogeneity of inputs to inhibitory networks strongly affect their ability to synchronize. In this paper, we explore how the amount of input heterogeneity to two-cell inhibitory networks affects their dynamics. Using numerical simulations and bifurcation analyses, we find that the ability of inhibitory networks to synchronize in the face of heterogeneity depends nonmonotonically on each of the synaptic time constant, synaptic conductance and external drive parameters. Because of this, an optimal set of parameters for a given cellular model with various biophysical characteristics can be determined. We suggest that this could be a helpful approach to use in determining the importance of different, underlying biophysical details. We further find that two-cell coherence properties are maintained in larger 10-cell networks. As such, we think that a strategy of "embedding" small network dynamics in larger networks is a useful way to understand the contribution of biophysically derived parameters to population dynamics in large networks.

摘要

从建模研究中可知,超过10年来,在内在和突触参数达到适当平衡的情况下,纯粹的抑制性网络能够产生同步输出。多项实验研究表明,抑制性网络产生的同步活动对于与各种行为状态相关的群体节律的产生至关重要。抑制性网络输入的异质性强烈影响其同步能力。在本文中,我们探讨了双细胞抑制性网络的输入异质性量如何影响其动态。通过数值模拟和分岔分析,我们发现抑制性网络在面对异质性时的同步能力非单调地依赖于每个突触时间常数、突触电导和外部驱动参数。因此,可以为具有各种生物物理特征的给定细胞模型确定一组最优参数。我们认为这可能是一种有助于确定不同潜在生物物理细节重要性的有用方法。我们进一步发现,双细胞的相干特性在更大的10细胞网络中得以维持。因此,我们认为将小网络动态“嵌入”大网络的策略是理解生物物理衍生参数对大网络群体动态贡献的一种有用方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验