Suppr超能文献

Genodermatoses 2003-2004.

作者信息

Schnur Rhonda E

机构信息

Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, New Jersey 08103, USA.

出版信息

Curr Opin Pediatr. 2004 Dec;16(6):678-88. doi: 10.1097/01.mop.0000145727.95637.d6.

Abstract

PURPOSE OF REVIEW

Many genodermatoses have been linked in recent years to their respective genes. The underlying biology and integrative nature of these genes with other genes and organ systems is beginning to be understood. This paper reviews recent advances in neurocutaneous disorders, ectodermal dysplasias, and the phenomenon of revertant gene mosaicism.

RECENT FINDINGS

In neurofibromatosis type 1, molecular assays are being developed to distinguish malignant from benign and premalignant lesions. Clinical mutation analysis for the NF1 gene has been problematic; a sensitive new assay using automated comparative sequence analysis may be helpful. Revision of clinical care guidelines is ongoing. New data for the prospective management of optic pathway gliomas is reviewed. The two genes that underlie tuberous sclerosis complex, tuberin and hamartin, lie at the center of an important signal transduction pathway with significant implications for pharmacologic treatment. Issues in genetic counseling for this highly variable disease are updated. Extensive progress has been made in understanding the basis of several forms of ectodermal dysplasia. Disorders caused by mutations in p63 and the connexin and NF-kappaB gene families will be reviewed. Finally, phenotypic in vivo amelioration of genodermatoses via revertant gene mosaicism will be discussed as a possible mechanism to be exploited in directed therapeutic approaches.

SUMMARY

This paper reviews recent developments in the molecular and biologic bases of neurofibromatosis type 1, tuberous sclerosis, and ectodermal disorders related to p63 and the connexin and NF-kappaB gene families. The concept of revertant gene mosaicism is also discussed as a potential model for gene therapy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验