Lucke Joseph E
School of Nursing, University of Texas Health Science Center, San Antonio, USA.
Can J Nurs Res. 2004 Sep;36(3):48-64.
A secondary meta-analysis of programs to reduce falls in the elderly is undertaken to demonstrate a Bayesian analysis. The Bayesian statistical tradition is carefully distinguished from the standard Neyman-Pearson-Wald (NPW) statistical tradition. In the 12 studies, the logit effect size is used to compare treatment groups using a prevention program to control groups without a program. To contrast the Bayesian analysis, independent-effects and fixed-effect meta-analyses are first conducted in the NPW tradition. This is followed by Bayesian independent-effects and fixed-effect meta-analyses that numerically replicate the NPW results but have conceptually different interpretations. The final analyses comprise Bayesian random-effects and predictive meta-analyses. These results differ numerically from all the previous meta-analyses and conceptually from the NPW meta-analyses. The random-effects analysis allows for heterogeneity in the effect sizes. The predictive analysis yields the distribution of a new, out-of-sample effect size, which accommodates not only the heterogeneity of the effects but also the imprecision in the parameter estimates. This last analysis shows that the effectiveness of new fall-prevention programs is less definitive than that found in the sample. Bayesian statistical methods are particularly well-suited for the complexities of nursing science studies.
开展了一项关于减少老年人跌倒项目的二次荟萃分析,以展示贝叶斯分析。贝叶斯统计传统与标准的奈曼 - 皮尔逊 - 瓦尔德(NPW)统计传统被仔细区分开来。在这12项研究中,使用逻辑效应量来比较采用预防项目的治疗组与未采用项目的对照组。为了对比贝叶斯分析,首先在NPW传统下进行独立效应和固定效应荟萃分析。随后进行贝叶斯独立效应和固定效应荟萃分析,其在数值上复制了NPW结果,但在概念上有不同的解释。最终分析包括贝叶斯随机效应和预测性荟萃分析。这些结果在数值上与之前所有的荟萃分析都不同,在概念上也与NPW荟萃分析不同。随机效应分析考虑了效应量的异质性。预测性分析得出一个新的样本外效应量的分布,它不仅考虑了效应的异质性,还考虑了参数估计中的不精确性。最后这一分析表明,新的跌倒预防项目的有效性不如样本中所发现的那样明确。贝叶斯统计方法特别适合护理科学研究的复杂性。