Schacht E
Onderzoeksgroep Biomaterialen, Vakgroep Organische Chemie, Faculteit Wetenschappen--UGent, Krijgslaan, 281-B 9000 Gent.
Verh K Acad Geneeskd Belg. 2004;66(4):242-5.
Biomaterials are essential components in the development of artificial organs. Synthetic polymers are widely used for a number of biomedical applications: a) as medical supplies, b) devices to support or replace malfunctioning body parts or c) systems with a local therapeutic function. The design of biomaterials has developped over the past three decades from devices with a mechanical function, over systems with a dedicated function (degradable, drug releasing, surface modified) to devices which are tailor made to interact in a smart way with the biological environment. At present polymers are attractive materials to construct scaffolds for tissue regeneration and regenerative medicine. The material design is adapted to the requirements for cell ingrowth, cell migration, angiogenesis etc. This is mainly controlled by the surface topography and chemistry that play a key role in the interfacial material-cell communication. This remarkable development is the direct result of a multi-disciplinary approach, combining material science with engineering, cell biology, molecular biology, medicine and regulatory guidelines.
生物材料是人工器官发展的重要组成部分。合成聚合物广泛应用于多种生物医学领域:a)作为医疗用品,b)用于支撑或替代功能失常身体部位的装置,或c)具有局部治疗功能的系统。在过去三十年中,生物材料的设计已从具有机械功能的装置,发展到具有特定功能(可降解、药物释放、表面改性)的系统,再到能够以智能方式与生物环境相互作用的定制装置。目前,聚合物是构建用于组织再生和再生医学支架的有吸引力的材料。材料设计适应细胞向内生长、细胞迁移、血管生成等要求。这主要由表面形貌和化学性质控制,它们在材料与细胞的界面通讯中起关键作用。这一显著发展是多学科方法的直接结果,该方法将材料科学与工程学、细胞生物学、分子生物学、医学及监管指南相结合。