Theisen Roslyn M, Shearer Jason, Kaminsky Werner, Kovacs Julie A
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA.
Inorg Chem. 2004 Nov 29;43(24):7682-90. doi: 10.1021/ic0491884.
The reactivity between a thiolate-ligated five-coordinate complex [FeII(SMe2N4(tren))]+ (1) and dioxygen is examined in order to determine if O2 activation, resembling that of the metalloenzyme cytochrome P450, can be promoted even when O2 binds cis, as opposed to trans, to a thiolate. Previous work in our group showed that [FeII(SMe2N4(tren))]+ (1) reacts readily with superoxide (O2-) in the presence of a proton source to afford H2O2 via an Fe(III)-OOH intermediate, thus providing a biomimetic model for the metalloenzyme superoxide reductase (SOR). Addition of O2 to 1 affords binuclear mu-oxo-bridged [FeIII(SMe2N4(tren))]2(mu2-O)(PF6)2.3MeCN (3). At low temperatures, in protic solvents, an intermediate is detected, the details of which will be the subject of a separate paper. Although the thiolate ligand does not appear to perturb the metrical parameters of the unsupported mu-oxo bridge (Fe-O= 1.807(8) A, and Fe-O-Fe= 155.3(5) degrees fall in the usual range), it decreases the magnetic coupling between the irons (J=-28 cm(-1)) and creates a rather basic oxo site. Protonation of this oxo using strong (HBF4, HCl) or weak (HOAc, NH4PF6, LutNHCl) acids results in bridge cleavage to cleanly afford the corresponding monomeric anion-ligated (OAc- (6), or Cl- (7)) or solvent-ligated (MeCN (4)) derivatives. Addition of OH- converts [FeIII(SMe2N4(tren))(MeCN2+ (4) back to mu-oxo 3. Thus, mu-oxo bridge cleavage is reversible. The protonated mu-hydroxo-bridged intermediate is not observed. In an attempt to prevent mu-oxo dimer formation, and facilitate the observation of O2-bound intermediates, a bulkier tertiary amine ligand, tren-Et4= N-(2-amino-ethyl)-N-(2-diethylamino-ethyl)-N',N'-diethyl-ethane-1,2-diamine, and the corresponding [FeII(SMe2N4(tren-Et4))]+ (5) complex was synthesized and structurally characterized. Steric repulsive interactions create unusually long FeII-N(3,4) amine bonds in 5 (mean distance=2.219(1) A). The [(tren-Et4)N4SMe2]1- ligand is unable to accommodate iron in the +3 oxidation state, and consequently, in contrast to most thiolate-ligated Fe(II) complexes, [FeII(SMe2N4(tren-Et4))]+ (5) does not readily react with O2. Oxidation of 5 is irreversible, and the potential (Epa=+410 mV (vs SCE)) is anodically shifted relative to 1 (E1/2=-100 mV (vs SCE)).
研究了硫醇盐配位的五配位配合物[FeII(SMe2N4(tren))]+ (1)与双氧之间的反应活性,以确定即使O2以顺式而非反式与硫醇盐结合时,是否能促进类似于金属酶细胞色素P450的O2活化。我们小组之前的工作表明,[FeII(SMe2N4(tren))]+ (1)在质子源存在下能与超氧阴离子(O2-)迅速反应,通过Fe(III)-OOH中间体生成H2O2,从而为金属酶超氧化物还原酶(SOR)提供了一个仿生模型。向1中加入O2可得到双核μ-氧桥联的[FeIII(SMe2N4(tren))]2(μ2-O)(PF6)2·3MeCN (3)。在低温下的质子溶剂中,检测到一种中间体,其详细情况将在另一篇论文中讨论。尽管硫醇盐配体似乎并未干扰无支撑μ-氧桥的几何参数(Fe-O = 1.807(8) Å,Fe-O-Fe = 155.3(5)°处于通常范围内),但它降低了铁之间的磁耦合(J = -28 cm-1)并产生了一个相当碱性的氧位点。使用强酸(HBF4、HCl)或弱酸(HOAc、NH4PF6、LutNHCl)使该氧位点质子化会导致桥键断裂,从而干净利落地得到相应的单体阴离子配位(OAc- (6)或Cl- (7))或溶剂配位(MeCN (4))衍生物。加入OH-可将[FeIII(SMe2N4(tren))(MeCN)2+ (4)变回μ-氧3。因此,μ-氧桥断裂是可逆的。未观察到质子化的μ-氢氧桥中间体。为了防止μ-氧二聚体形成并便于观察O2结合中间体,合成并对结构进行了表征了一种体积更大的叔胺配体tren-Et4 = N-(2-氨基乙基)-N-(2-二乙氨基乙基)-N',N'-二乙基乙烷-1,2-二胺以及相应的[FeII(SMe2N4(tren-Et4))]+ (5)配合物。空间排斥相互作用在5中产生了异常长的FeII-N(3,4)胺键(平均距离 = 2.219(1) Å)。[(tren-Et4)N4SMe2]1-配体无法容纳处于+3氧化态的铁,因此,与大多数硫醇盐配位的Fe(II)配合物不同,[FeII(SMe2N4(tren-Et4))]+ (5)与O2反应不迅速。5的氧化是不可逆的,其电位(Epa = +410 mV (相对于SCE))相对于1 (E1/2 = -100 mV (相对于SCE))发生阳极偏移。