Suppr超能文献

对硫醇盐配位的Fe(II)配合物与双氧和超氧反应活性的空间和电子控制:可逆的μ-氧代二聚体形成。

Steric and electronic control over the reactivity of a thiolate-ligated Fe(II) complex with dioxygen and superoxide: reversible mu-oxo dimer formation.

作者信息

Theisen Roslyn M, Shearer Jason, Kaminsky Werner, Kovacs Julie A

机构信息

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA.

出版信息

Inorg Chem. 2004 Nov 29;43(24):7682-90. doi: 10.1021/ic0491884.

Abstract

The reactivity between a thiolate-ligated five-coordinate complex [FeII(SMe2N4(tren))]+ (1) and dioxygen is examined in order to determine if O2 activation, resembling that of the metalloenzyme cytochrome P450, can be promoted even when O2 binds cis, as opposed to trans, to a thiolate. Previous work in our group showed that [FeII(SMe2N4(tren))]+ (1) reacts readily with superoxide (O2-) in the presence of a proton source to afford H2O2 via an Fe(III)-OOH intermediate, thus providing a biomimetic model for the metalloenzyme superoxide reductase (SOR). Addition of O2 to 1 affords binuclear mu-oxo-bridged [FeIII(SMe2N4(tren))]2(mu2-O)(PF6)2.3MeCN (3). At low temperatures, in protic solvents, an intermediate is detected, the details of which will be the subject of a separate paper. Although the thiolate ligand does not appear to perturb the metrical parameters of the unsupported mu-oxo bridge (Fe-O= 1.807(8) A, and Fe-O-Fe= 155.3(5) degrees fall in the usual range), it decreases the magnetic coupling between the irons (J=-28 cm(-1)) and creates a rather basic oxo site. Protonation of this oxo using strong (HBF4, HCl) or weak (HOAc, NH4PF6, LutNHCl) acids results in bridge cleavage to cleanly afford the corresponding monomeric anion-ligated (OAc- (6), or Cl- (7)) or solvent-ligated (MeCN (4)) derivatives. Addition of OH- converts [FeIII(SMe2N4(tren))(MeCN2+ (4) back to mu-oxo 3. Thus, mu-oxo bridge cleavage is reversible. The protonated mu-hydroxo-bridged intermediate is not observed. In an attempt to prevent mu-oxo dimer formation, and facilitate the observation of O2-bound intermediates, a bulkier tertiary amine ligand, tren-Et4= N-(2-amino-ethyl)-N-(2-diethylamino-ethyl)-N',N'-diethyl-ethane-1,2-diamine, and the corresponding [FeII(SMe2N4(tren-Et4))]+ (5) complex was synthesized and structurally characterized. Steric repulsive interactions create unusually long FeII-N(3,4) amine bonds in 5 (mean distance=2.219(1) A). The [(tren-Et4)N4SMe2]1- ligand is unable to accommodate iron in the +3 oxidation state, and consequently, in contrast to most thiolate-ligated Fe(II) complexes, [FeII(SMe2N4(tren-Et4))]+ (5) does not readily react with O2. Oxidation of 5 is irreversible, and the potential (Epa=+410 mV (vs SCE)) is anodically shifted relative to 1 (E1/2=-100 mV (vs SCE)).

摘要

研究了硫醇盐配位的五配位配合物[FeII(SMe2N4(tren))]+ (1)与双氧之间的反应活性,以确定即使O2以顺式而非反式与硫醇盐结合时,是否能促进类似于金属酶细胞色素P450的O2活化。我们小组之前的工作表明,[FeII(SMe2N4(tren))]+ (1)在质子源存在下能与超氧阴离子(O2-)迅速反应,通过Fe(III)-OOH中间体生成H2O2,从而为金属酶超氧化物还原酶(SOR)提供了一个仿生模型。向1中加入O2可得到双核μ-氧桥联的[FeIII(SMe2N4(tren))]2(μ2-O)(PF6)2·3MeCN (3)。在低温下的质子溶剂中,检测到一种中间体,其详细情况将在另一篇论文中讨论。尽管硫醇盐配体似乎并未干扰无支撑μ-氧桥的几何参数(Fe-O = 1.807(8) Å,Fe-O-Fe = 155.3(5)°处于通常范围内),但它降低了铁之间的磁耦合(J = -28 cm-1)并产生了一个相当碱性的氧位点。使用强酸(HBF4、HCl)或弱酸(HOAc、NH4PF6、LutNHCl)使该氧位点质子化会导致桥键断裂,从而干净利落地得到相应的单体阴离子配位(OAc- (6)或Cl- (7))或溶剂配位(MeCN (4))衍生物。加入OH-可将[FeIII(SMe2N4(tren))(MeCN)2+ (4)变回μ-氧3。因此,μ-氧桥断裂是可逆的。未观察到质子化的μ-氢氧桥中间体。为了防止μ-氧二聚体形成并便于观察O2结合中间体,合成并对结构进行了表征了一种体积更大的叔胺配体tren-Et4 = N-(2-氨基乙基)-N-(2-二乙氨基乙基)-N',N'-二乙基乙烷-1,2-二胺以及相应的[FeII(SMe2N4(tren-Et4))]+ (5)配合物。空间排斥相互作用在5中产生了异常长的FeII-N(3,4)胺键(平均距离 = 2.219(1) Å)。[(tren-Et4)N4SMe2]1-配体无法容纳处于+3氧化态的铁,因此,与大多数硫醇盐配位的Fe(II)配合物不同,[FeII(SMe2N4(tren-Et4))]+ (5)与O2反应不迅速。5的氧化是不可逆的,其电位(Epa = +410 mV (相对于SCE))相对于1 (E1/2 = -100 mV (相对于SCE))发生阳极偏移。

相似文献

2
Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition.
Inorg Chem. 2021 May 17;60(10):7250-7261. doi: 10.1021/acs.inorgchem.1c00336. Epub 2021 Apr 26.
4
Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds.
J Am Chem Soc. 2022 May 18;144(19):8515-8528. doi: 10.1021/jacs.1c07656. Epub 2022 May 6.
5
Role of protons in superoxide reduction by a superoxide reductase analogue.
Inorg Chem. 2005 Mar 7;44(5):1169-71. doi: 10.1021/ic048818z.
8
How does cyanide inhibit superoxide reductase? Insight from synthetic FeIIIN4S model complexes.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3671-6. doi: 10.1073/pnas.0637029100. Epub 2003 Mar 24.

引用本文的文献

1
Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds.
J Am Chem Soc. 2022 May 18;144(19):8515-8528. doi: 10.1021/jacs.1c07656. Epub 2022 May 6.
3
Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes.
Inorganica Chim Acta. 2021 Sep 1;524. doi: 10.1016/j.ica.2021.120422. Epub 2021 Apr 30.
4
Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition.
Inorg Chem. 2021 May 17;60(10):7250-7261. doi: 10.1021/acs.inorgchem.1c00336. Epub 2021 Apr 26.
5
Proton-Coupled Electron-Transfer Reactivity Controls Iron versus Sulfur Oxidation in Nonheme Iron-Thiolate Complexes.
Inorg Chem. 2021 May 3;60(9):6255-6265. doi: 10.1021/acs.inorgchem.0c03779. Epub 2021 Apr 19.
6
Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates.
J Am Chem Soc. 2019 Nov 6;141(44):17533-17547. doi: 10.1021/jacs.9b05274. Epub 2019 Oct 24.
7
Diiron oxo reactivity in a weak-field environment.
Chem Sci. 2019 May 9;10(25):6304-6310. doi: 10.1039/c9sc00605b. eCollection 2019 Jul 7.
9
Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.
J Am Chem Soc. 2017 Jan 11;139(1):119-129. doi: 10.1021/jacs.6b03512. Epub 2016 Dec 29.
10
Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry.
J Am Chem Soc. 2016 Feb 17;138(6):1983-93. doi: 10.1021/jacs.5b12582. Epub 2016 Feb 4.

本文引用的文献

1
Synthesis, Structure, and Spectroscopic Properties of [Fe (tnpa)(OH)(PhCOO)]ClO : A Model Complex for an Active Form of Soybean Lipoxygenase-1.
Angew Chem Int Ed Engl. 1998 Aug 17;37(15):2102-2104. doi: 10.1002/(SICI)1521-3773(19980817)37:15<2102::AID-ANIE2102>3.0.CO;2-A.
2
Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry.
Science. 2004 Jun 11;304(5677):1653-6. doi: 10.1126/science.1096897.
3
FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes.
Crit Rev Biochem Mol Biol. 2004 Jan-Feb;39(1):21-68. doi: 10.1080/10409230490440541.
10
Synthesis and characterization of N2S3X-Fe models of iron-containing nitrile hydratase.
Inorg Chem. 2003 Jul 14;42(14):4382-8. doi: 10.1021/ic026239t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验