Brines Lisa M, Shearer Jason, Fender Jessica K, Schweitzer Dirk, Shoner Steven C, Barnhart David, Kaminsky Werner, Lovell Scott, Kovacs Julie A
The Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
Inorg Chem. 2007 Oct 29;46(22):9267-77. doi: 10.1021/ic701433p. Epub 2007 Sep 15.
A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky (tren)N4S ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures are observed. The MII-S thiolate bonds systematically decrease in length across the series (Mn-S > Fe-S > Co-S > Ni-S approximately Cu-S < Zn-S) with exceptions occurring upon the occupation of sigma* orbitals. The copper complex, [Cu(II)(S(Me2)N4(tren)]+, represents a rare example of a stable CuII-thiolate, and models the perturbed "green" copper site of nitrite reductase. In contrast to the intensely colored, low-spin Fe(III)-thiolates, the M(II)-thiolates described herein are colorless to moderately colored and high-spin (in cases where more than one spin-state is possible), reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the d-orbitals drop in energy proceeding across the across the series M(2+) (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced M(+1) oxidation state is only accessible with copper, and the more oxidized M(+4) oxidation state is only accessible for manganese.
报道了一系列五配位硫醇盐配位的配合物[M(II)(tren)N4S(Me2)]+(M = Mn、Fe、Co、Ni、Cu、Zn;tren = 三(2-氨基乙基)胺),并比较了它们的结构、电子和磁性性质。使用体积较小的(tren)N4S配体分离出二聚体[Ni(II)(SN4(tren)-RS(dang))]2(“dang”= 悬垂的、由氢键支撑的未配位硫醇盐),这表明需要在硫原子相邻位置有偕二甲基以在空间上防止二聚化。所有偕二甲基衍生的配合物都是单体,除了[Ni(II)(S(Me2)N4(tren)]+外,它们具有相同的结构并采用由配体限制所青睐的四方畸变三角双锥几何构型。镍配合物独特地采用近似理想的正方锥几何构型,类似于镍超氧化物歧化酶(Ni-SOD)的活性位点。即使在诸如乙腈等配位溶剂中,也仅观察到五配位结构。MII-S硫醇盐键在该系列中系统地缩短(Mn-S > Fe-S > Co-S > Ni-S ≈ Cu-S < Zn-S),在占据σ*轨道时会出现例外情况。铜配合物[Cu(II)(S(Me2)N4(tren)]+是稳定的CuII-硫醇盐的罕见例子,并模拟了亚硝酸盐还原酶中受扰动的“绿色”铜位点。与颜色深、低自旋的Fe(III)-硫醇盐不同,本文所述的M(II)-硫醇盐无色至中等颜色且为高自旋(在可能存在多种自旋态的情况下),这反映出金属离子还原后金属d轨道和硫轨道之间的能量匹配较差。随着d轨道能量在M(2+)(M = Mn、Fe、Co、Ni、Cu)系列中逐渐降低,硫到金属的电荷转移跃迁进入可见光区域,氧化还原电位向阴极移动。还原态的M(+1)氧化态仅在铜的情况下可获得,而氧化程度更高的M(+4)氧化态仅在锰的情况下可获得。