Musaev Djamaladdin G, Morokuma Keiji, Geletii Yurii V, Hill Craig L
Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
Inorg Chem. 2004 Nov 29;43(24):7702-8. doi: 10.1021/ic0490674.
The B3LYP density functional method has been validated for the di-Mn-substituted gamma-Keggin polyoxometalate (POM) anion, [(SiO4)MnIII2(OH)2W10O32]4-, and for the divacant lacunary silicodecatungastate, gamma-[(SiO4)W10O32]8-. This approach was shown to adequately describe the geometries of [(SiO4)MnIII2(OH)2W10O32]4- and gamma-[(SiO4)W10O32]8. Three different geometrical models, "full", "medium", and "small", for Mn2-gamma-Keggin have also been validated. It was shown that the medium [(SiO4)MnIII2(OH)2W6O24H8]4- model, as well as small [(SiO4)MnIII2(OH)2W4O18H10]2- model, preserves structural features of the full system, [(SiO4)MnIII2(OH)2W10O32]4-. However, the small model distorts the charge distribution at the "active site" of the system and should be used with caution. The same computational approach was employed to elucidate the structure of the di-Fe-substituted gamma-Keggin POM. The structure of the acidic (tetra-protonated form) of lacunary POM, gamma-[(SiO4)W10O32H4]4-, was shown to be gamma-[(SiO4)W10O28(OH)4]4- with four terminal hydroxo ligands, rather than gamma-[(SiO4)W10O30(H2O)2]4- with two aqua and two oxo(terminal) ligands as reported by Mizuno and co-workers (Science 2003, 300, 964). The observed and calculated asymmetry in the W-O(terminal) bond distances of gamma-[(SiO4)W10O32H4]4- is explained in terms of the existence of O1H1...O2H2 and O4H4...O3H3 hydrogen-bonding patterns in the gamma-[(SiO4)W10O28(OH)4]4- structure.
B3LYP密度泛函方法已针对二锰取代的γ-凯吉型多金属氧酸盐(POM)阴离子[(SiO4)MnIII2(OH)2W10O32]4-以及二缺位的硅代十钨酸盐γ-[(SiO4)W10O32]8-进行了验证。结果表明,该方法能够充分描述[(SiO4)MnIII2(OH)2W10O32]4-和γ-[(SiO4)W10O32]8的几何结构。还对Mn2-γ-凯吉型的三种不同几何模型“完整”“中等”和“小”进行了验证。结果表明,中等[(SiO4)MnIII2(OH)2W6O24H8]4-模型以及小[(SiO4)MnIII2(OH)2W4O18H10]2-模型保留了完整体系[(SiO4)MnIII2(OH)2W10O32]4-的结构特征。然而,小模型会扭曲体系“活性位点”处的电荷分布,应谨慎使用。采用相同的计算方法来阐明二铁取代的γ-凯吉型POM的结构。缺位POM的酸性(四质子化形式)γ-[(SiO4)W10O(32)H4]4-的结构被证明是具有四个末端羟基配体的γ-[(SiO4)W10O28(OH)4]4-,而不是水野及其同事所报道的具有两个水和两个氧(末端)配体的γ-[(SiO4)W10O30(H2O)2]4-(《科学》2003年,第300卷,第964页)。γ-[(SiO4)W10O(32)H4]4-中W - O(末端)键长的观测和计算不对称性是根据γ-[(SiO4)W10O28(OH)4]4-结构中存在O1H1...O2H2和O4H4...O3H3氢键模式来解释的。