Suppr超能文献

Ensemble methods for classification in cheminformatics.

作者信息

Merkwirth Christian, Mauser Harald, Schulz-Gasch Tanja, Roche Olivier, Stahl Martin, Lengauer Thomas

机构信息

Computational Biology & Applied Algorithmics Group, Max-Planck-Institut für Informatik, Stuhlsatzenhauseg 85, 66123 Saarbrücken, Germany, and Roche Pharma Research, Basel, Switzerland.

出版信息

J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):1971-8. doi: 10.1021/ci049850e.

Abstract

We describe the application of ensemble methods to binary classification problems on two pharmaceutical compound data sets. Several variants of single and ensembles models of k-nearest neighbors classifiers, support vector machines (SVMs), and single ridge regression models are compared. All methods exhibit robust classification even when more features are given than observations. On two data sets dealing with specific properties of drug-like substances (cytochrome P450 inhibition and "Frequent Hitters", i.e., unspecific protein inhibition), we achieve classification rates above 90%. We are able to reduce the cross-validated misclassification rate for the Frequent Hitters problem by a factor of 2 compared to previous results obtained for the same data set with different modeling techniques.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验