Suppr超能文献

使用4D分子相似性度量和聚类分析相结合的方法构建最佳血脑屏障定量构效关系模型。

Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis.

作者信息

Pan Dahua, Iyer Manisha, Liu Jianzhong, Li Yi, Hopfinger Anton J

机构信息

Laboratory of Molecular Modeling and Design (M/C 781), College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA.

出版信息

J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):2083-98. doi: 10.1021/ci0498057.

Abstract

A new method, using a combination of 4D-molecular similarity measures and cluster analysis to construct optimum QSAR models, is applied to a data set of 150 chemically diverse compounds to build optimum blood-brain barrier (BBB) penetration models. The complete data set is divided into subsets based on 4D-molecular similarity measures using cluster analysis. The compounds in each cluster subset are further divided into a training set and a test set. Predictive QASAR models are constructed for each cluster subset using the corresponding training sets. These QSAR models best predict test set compounds which are assigned to the same cluster subset, based on the 4D-molecular similarity measures, from which the models are derived. The results suggest that the specific properties governing blood-brain barrier permeability may vary across chemically diverse compounds. Partitioning compounds into chemically similar classes is essential to constructing predictive blood-brain barrier penetration models embedding the corresponding key physiochemical properties of a given chemical class.

摘要

一种结合4D分子相似性度量和聚类分析来构建最优定量构效关系(QSAR)模型的新方法,被应用于150种化学结构各异的化合物数据集,以构建最优的血脑屏障(BBB)渗透模型。使用聚类分析基于4D分子相似性度量将完整的数据集划分为多个子集。每个聚类子集中的化合物进一步分为训练集和测试集。使用相应的训练集为每个聚类子集构建预测性QSAR模型。这些QSAR模型能最好地预测基于4D分子相似性度量被分配到与模型所源自的相同聚类子集的测试集化合物。结果表明,控制血脑屏障通透性的特定属性可能因化学结构各异的化合物而有所不同。将化合物划分为化学性质相似的类别对于构建嵌入给定化学类别的相应关键物理化学性质的预测性血脑屏障渗透模型至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验