Byrne Richard D, Barona Teresa M, Garnier Marie, Koster Grielof, Katan Matilda, Poccia Dominic L, Larijani Banafshé
Cell Biophysics Laboratory, London Research Institute (LRI), Cancer Research UK (CR-UK), 44, Lincoln's Inn Fields, London, WC2A 3PX, UK.
Biochem J. 2005 Apr 15;387(Pt 2):393-400. doi: 10.1042/BJ20040947.
Nuclear envelope (NE) formation in a cell-free egg extract proceeds by precursor membrane vesicle binding to chromatin in an ATP-dependent manner, followed by a GTP-induced NE assembly step. The requirement for GTP in the latter step of this process can be mimicked by addition of bacterial PI-PLC [phosphoinositide (PtdIns)-specific phospholipase C]. The NE assembly process is here dissected in relation to the requirement for endogenous phosphoinositide metabolism, employing recombinant eukaryotic PI-PLC, inhibitors and direct phospholipid analysis using ESI-MS (electrospray ionization mass spectrometry). PtdIns (phosphatidylinositol) species analysis by ESI-MS indicates that the chromatin-bound NE precursor vesicles are enriched for specific PtdIns species. Moreover, during GTP-induced precursor vesicle fusion, the membrane vesicles become partially depleted of the PtdIns 18:0/20:4 species. These data indicate that eukaryotic PI-PLC can support NE formation, and the sensitivity to exogenous recombinant PtdIns-5-phosphatases shows that the endogenous PLC hydrolyses a 5-phosphorylated species. It is shown further that the downstream target of this DAG (diacylglycerol) pathway does not involve PKC (protein kinase C) catalytic function, but is mimicked by phorbol esters, indicating a possible engagement of one of the non-PKC phorbol ester receptors. The results show that ESI-MS can be used as a sensitive means to measure the lipid composition of biological membranes and their changes during, for example, membrane fusogenic events. We have exploited this and the intervention studies to illustrate a pivotal role for PI-PLC and its product DAG in the formation of NEs.
在无细胞的卵提取物中,核膜(NE)的形成过程是前体膜囊泡以ATP依赖的方式与染色质结合,随后是由GTP诱导的NE组装步骤。在这一过程的后一步骤中,对GTP的需求可以通过添加细菌PI-PLC[磷酸肌醇(PtdIns)特异性磷脂酶C]来模拟。在此,我们利用重组真核PI-PLC、抑制剂,并使用电喷雾电离质谱(ESI-MS)进行直接磷脂分析,针对内源性磷酸肌醇代谢的需求剖析了NE组装过程。通过ESI-MS进行的PtdIns(磷脂酰肌醇)种类分析表明,与染色质结合的NE前体囊泡富含特定的PtdIns种类。此外,在GTP诱导的前体囊泡融合过程中,膜囊泡中的PtdIns 18:0/20:4种类会部分耗尽。这些数据表明,真核PI-PLC能够支持NE的形成,对外源重组PtdIns-5-磷酸酶的敏感性表明内源性PLC水解了一种5-磷酸化的种类。进一步表明,该二酰基甘油(DAG)途径的下游靶点不涉及蛋白激酶C(PKC)的催化功能,但可被佛波酯模拟,这表明可能有一个非PKC佛波酯受体参与其中。结果表明,ESI-MS可作为一种灵敏的手段来测量生物膜的脂质组成及其在例如膜融合事件期间的变化。我们利用这一点以及干预研究来说明PI-PLC及其产物DAG在NE形成中的关键作用。