Suppr超能文献

分层递归神经网络中的运动原语与序列自组织

Motor primitive and sequence self-organization in a hierarchical recurrent neural network.

作者信息

Paine Rainer W, Tani Jun

机构信息

Laboratory for Behavior and Dynamic Cognition, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

出版信息

Neural Netw. 2004 Oct-Nov;17(8-9):1291-309. doi: 10.1016/j.neunet.2004.08.005.

Abstract

This study describes how complex goal-directed behavior can be obtained through adaptation processes in a hierarchically organized recurrent neural network using a genetic algorithm (GA). Our experiments, using a simulated Khepera robot, showed that different types of dynamic structures self-organize in the lower and higher levels of the network for the purpose of achieving complex navigation tasks. The parametric bifurcation structures that appear in the lower level explain the mechanism of how behavior primitives are switched in a top-down way. In the higher level, a topologically ordered mapping of initial cell activation states to motor primitive sequences self-organizes by utilizing the initial sensitivity characteristics of non-linear dynamical systems. The biological plausibility of the model's essential principles is discussed.

摘要

本研究描述了如何通过使用遗传算法(GA)在分层组织的递归神经网络中进行自适应过程来获得复杂的目标导向行为。我们使用模拟的Khepera机器人进行的实验表明,为了实现复杂的导航任务,不同类型的动态结构在网络的较低层和较高层中自组织。较低层出现的参数分岔结构解释了行为原语如何以自上而下的方式切换的机制。在较高层,通过利用非线性动力系统的初始敏感性特征,初始细胞激活状态到运动原语序列的拓扑有序映射自组织形成。本文还讨论了该模型基本原理的生物学合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验