Suppr超能文献

镜像系统中分布式表示的多个行为模式的自组织:使用RNNPB的机器人实验综述

Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB.

作者信息

Tani Jun, Ito Masato, Sugita Yuuya

机构信息

Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

出版信息

Neural Netw. 2004 Oct-Nov;17(8-9):1273-89. doi: 10.1016/j.neunet.2004.05.007.

Abstract

The current paper reviews a connectionist model, the recurrent neural network with parametric biases (RNNPB), in which multiple behavior schemata can be learned by the network in a distributed manner. The parametric biases in the network play an essential role in both generating and recognizing behavior patterns. They act as a mirror system by means of self-organizing adequate memory structures. Three different robot experiments are reviewed: robot and user interactions; learning and generating different types of dynamic patterns; and linguistic-behavior binding. The hallmark of this study is explaining how self-organizing internal structures can contribute to generalization in learning, and diversity in behavior generation, in the proposed distributed representation scheme.

摘要

本文回顾了一种联结主义模型,即带参数偏差的递归神经网络(RNNPB),在该模型中,网络能够以分布式方式学习多种行为模式。网络中的参数偏差在行为模式的生成和识别中都起着至关重要的作用。它们通过自组织适当的记忆结构充当镜像系统。本文回顾了三个不同的机器人实验:机器人与用户的交互;学习和生成不同类型的动态模式;以及语言与行为的绑定。本研究的特点在于解释了在所提出的分布式表示方案中,自组织内部结构如何有助于学习中的泛化以及行为生成中的多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验