Wang Jianping, Lin Wensheng, Popko Brian, Campbell Iain L
Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Mol Cell Neurosci. 2004 Dec;27(4):489-96. doi: 10.1016/j.mcn.2004.08.004.
Here we examined the role of interferon (IFN)-gamma in regulating the Sonic hedgehog (Shh) pathway and cerebellar development in bigenic mice with temporal control of IFN-gamma gene expression driven by a tetracycline-controllable promoter. In IFN-gamma-expressing but not age-matched non-IFN-gamma-expressing bigenic or control mice, development of the cerebellum was severely affected with the persistence and extensive proliferation of the external granule neuron layer (EGL) and infiltration with modest numbers of T-lymphocytes. Following induction of IFN-gamma transgene expression, both total and tyrosine-phosphorylated signal transducer and activator of transcription (STAT)1 (the major transcriptional factor for IFN-gamma), phosphorylated STAT3 and STAT5, and expression of a number of IFN-gamma-regulated genes were significantly increased in cerebellum. In the cerebellum from IFN-gamma-expressing but not age-matched non-IFN-gamma-expressing mice, the level of Shh and Gli-1 but not Patched (Ptch) 1 RNA was increased as was the 19-kDa signaling product of the Shh precursor protein. In situ localization studies revealed ectopic expression of the Shh gene by the granule neurons. We conclude that IFN-gamma directly affects the proliferation and fate of EGL neurons in the cerebellum by activating the Shh pathway and stimulating an autocrine growth response by these cells.
在此,我们研究了干扰素(IFN)-γ在调控双转基因小鼠中 Sonic hedgehog(Shh)信号通路及小脑发育过程中的作用。这些双转基因小鼠中,IFN-γ基因的表达受四环素可控启动子的时间控制。在表达IFN-γ的双转基因小鼠中,而非年龄匹配的不表达IFN-γ的双转基因小鼠或对照小鼠中,小脑发育受到严重影响,表现为外颗粒神经元层(EGL)持续且广泛增殖,并有少量T淋巴细胞浸润。在诱导IFN-γ转基因表达后,小脑内总的及酪氨酸磷酸化的信号转导和转录激活因子(STAT)1(IFN-γ的主要转录因子)、磷酸化的STAT3和STAT5以及一些IFN-γ调控基因的表达均显著增加。在表达IFN-γ的小鼠而非年龄匹配的不表达IFN-γ的小鼠的小脑中,Shh和Gli-1的RNA水平升高,但Patched(Ptch)1的RNA水平未升高,Shh前体蛋白的19-kDa信号产物水平也升高。原位定位研究显示颗粒神经元异位表达Shh基因。我们得出结论,IFN-γ通过激活Shh信号通路并刺激这些细胞的自分泌生长反应,直接影响小脑中EGL神经元的增殖和命运。