Khakh Baljit S, Egan Terrance M
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
J Biol Chem. 2005 Feb 18;280(7):6118-29. doi: 10.1074/jbc.M411324200. Epub 2004 Nov 19.
ATP-gated P2X(2) channels undergo activation-dependent permeability increases as they proceed from the selective I(1) state to the I(2) state that is readily permeable to organic cations. There are two main models about how permeability changes may occur. The first proposes that permeability change-competent P2X channels are clustered or redistribute to form such regions in response to ATP. The second proposes that permeability changes occur because of an intrinsic conformational change in P2X channels. In the present study we experimentally tested these views with total internal reflection fluorescence microscopy, electrophysiology, and mutational perturbation analysis. We found no evidence for clusters of P2X(2) channels within the plasma membrane or for cluster formation in response to ATP, suggesting that channel clustering is not an obligatory requirement for permeability changes. We next sought to identify determinants of putative intrinsic conformational changes in P2X(2) channels by mapping the transmembrane domain regions involved in the transition from the relatively selective I(1) state to the dilated I(2) state. Initial channel opening to the I(1) state was only weakly affected by Ala substitutions, whereas dramatic effects were observed for the higher permeability I(2) state. Ten residues appeared to perturb only the I(1)-I(2) transition (Phe(31), Arg(34), Gln(37), Lys(53), Ile(328), Ile(332), Ser(340), Gly(342), Trp(350), Leu(352)). The data favor the hypothesis that permeability changes occur because of permissive motions at the interface between first and second transmembrane domains of neighboring subunits in pre-existing P2X(2) channels.
ATP门控的P2X(2)通道从选择性的I(1)状态转变为对有机阳离子具有高通透性的I(2)状态时,会经历激活依赖性的通透性增加。关于通透性变化如何发生,主要有两种模型。第一种模型认为,具有通透性变化能力的P2X通道会聚集或重新分布,以响应ATP形成这样的区域。第二种模型认为,通透性变化是由于P2X通道内部的构象变化。在本研究中,我们通过全内反射荧光显微镜、电生理学和突变扰动分析对这些观点进行了实验验证。我们没有发现质膜内存在P2X(2)通道簇或响应ATP形成通道簇的证据,这表明通道簇不是通透性变化的必要条件。接下来,我们试图通过绘制参与从相对选择性的I(1)状态到扩张的I(2)状态转变的跨膜结构域区域,来确定P2X(2)通道中假定的内在构象变化的决定因素。最初通道开放到I(1)状态时,丙氨酸替代的影响较弱,而在通透性更高的I(2)状态下则观察到显著影响。有十个残基似乎仅干扰I(1)-I(2)转变(苯丙氨酸(31)、精氨酸(34)、谷氨酰胺(37)、赖氨酸(53)、异亮氨酸(328)、异亮氨酸(332)、丝氨酸(340)、甘氨酸(342)、色氨酸(350)、亮氨酸(352))。这些数据支持这样的假说,即通透性变化是由于在预先存在的P2X(2)通道中相邻亚基的第一和第二跨膜结构域之间的界面处发生了允许的运动。