Suppr超能文献

位于亚基界面的假定细胞外盐桥有助于 ATP 门控 P2X2 受体的离子通道功能。

A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor.

机构信息

Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, BP 24, 67401 Illkirch Cedex, France.

出版信息

J Biol Chem. 2010 May 21;285(21):15805-15. doi: 10.1074/jbc.M110.101980. Epub 2010 Mar 22.

Abstract

The recent crystal structure of the ATP-gated P2X4 receptor revealed a static view of its architecture, but the molecular mechanisms underlying the P2X channels activation are still unknown. By using a P2X2 model based on the x-ray structure, we sought salt bridges formed between charged residues located in a region that directly connects putative ATP-binding sites to the ion channel. To reveal their significance for ion channel activation, we made systematic charge exchanges and measured the effects on ATP sensitivity. We found that charge reversals at the interfacial residues Glu(63) and Arg(274) produced gain-of-function phenotypes that were cancelled upon paired charge swapping. These results suggest that a putative intersubunit salt bridge formed between Glu(63) and Arg(274) contributes to the ion channel function. Engineered cysteines E63C and R274C formed redox-dependent cross-links in the absence of ATP. By contrast, the presence of ATP reduced the rate of disulfide bond formation, indicating that ATP binding might trigger relative movement of adjacent subunits at the level of Glu(63) and Arg(274), allowing the transmembrane helices to open the channel.

摘要

最近的 ATP 门控 P2X4 受体晶体结构揭示了其结构的静态视图,但 P2X 通道激活的分子机制仍不清楚。我们使用基于 X 射线结构的 P2X2 模型,研究了位于直接连接假定 ATP 结合位点和离子通道的区域中带电荷残基之间形成的盐桥。为了揭示它们对离子通道激活的意义,我们进行了系统的电荷交换,并测量了对 ATP 敏感性的影响。我们发现,界面残基 Glu(63)和 Arg(274)上的电荷反转产生了功能获得表型,而配对电荷交换则消除了这种表型。这些结果表明,Glu(63)和 Arg(274)之间形成的假定亚基间盐桥有助于离子通道功能。在没有 ATP 的情况下,工程化的半胱氨酸 E63C 和 R274C 形成了氧化还原依赖性交联。相比之下,ATP 的存在降低了二硫键形成的速度,表明 ATP 结合可能触发相邻亚基在 Glu(63)和 Arg(274)水平的相对运动,从而允许跨膜螺旋打开通道。

相似文献

1
A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor.
J Biol Chem. 2010 May 21;285(21):15805-15. doi: 10.1074/jbc.M110.101980. Epub 2010 Mar 22.
2
Subunit arrangement in P2X receptors.
J Neurosci. 2003 Oct 1;23(26):8903-10. doi: 10.1523/JNEUROSCI.23-26-08903.2003.
3
On the role of the first transmembrane domain in cation permeability and flux of the ATP-gated P2X2 receptor.
J Biol Chem. 2008 Feb 22;283(8):5110-7. doi: 10.1074/jbc.M708713200. Epub 2007 Nov 29.
6
Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking.
J Biol Chem. 2014 Apr 4;289(14):9909-17. doi: 10.1074/jbc.M113.542811. Epub 2014 Feb 10.
7
Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics.
J Biol Chem. 2005 Feb 18;280(7):6118-29. doi: 10.1074/jbc.M411324200. Epub 2004 Nov 19.
8
Salt bridge switching from Arg290/Glu167 to Arg290/ATP promotes the closed-to-open transition of the P2X2 receptor.
Mol Pharmacol. 2013 Jan;83(1):73-84. doi: 10.1124/mol.112.081489. Epub 2012 Oct 5.
10
Molecular properties of P2X receptors.
Pflugers Arch. 2006 Aug;452(5):486-500. doi: 10.1007/s00424-006-0073-6. Epub 2006 Apr 11.

引用本文的文献

1
P2X2 receptor subunit interfaces are missense variant hotspots, where mutations tend to increase apparent ATP affinity.
Br J Pharmacol. 2022 Jul;179(14):3859-3874. doi: 10.1111/bph.15830. Epub 2022 Mar 29.
3
Accelerated Current Decay Kinetics of a Rare Human Acid-Sensing ion Channel 1a Variant That Is Used in Many Studies as Wild Type.
Front Mol Neurosci. 2019 May 24;12:133. doi: 10.3389/fnmol.2019.00133. eCollection 2019.
4
Molecular determinants for agonist recognition and discrimination in P2X2 receptors.
J Gen Physiol. 2019 Jul 1;151(7):898-911. doi: 10.1085/jgp.201912347. Epub 2019 May 24.
7
On the permeation of large organic cations through the pore of ATP-gated P2X receptors.
Proc Natl Acad Sci U S A. 2017 May 9;114(19):E3786-E3795. doi: 10.1073/pnas.1701379114. Epub 2017 Apr 25.
8
The Dynamic Behavior of the P2X Ion Channel in the Closed Conformation.
Biophys J. 2016 Dec 20;111(12):2642-2650. doi: 10.1016/j.bpj.2016.10.027.
9
A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors.
J Biol Chem. 2016 Apr 8;291(15):7990-8003. doi: 10.1074/jbc.M115.711127. Epub 2016 Feb 10.
10
Inter-subunit disulfide locking of the human P2X3 receptor elucidates ectodomain movements associated with channel gating.
Purinergic Signal. 2016 Jun;12(2):221-33. doi: 10.1007/s11302-016-9496-5. Epub 2016 Jan 29.

本文引用的文献

1
The neural-glial purinergic receptor ensemble in chronic pain states.
Trends Neurosci. 2010 Jan;33(1):48-57. doi: 10.1016/j.tins.2009.10.003. Epub 2009 Nov 14.
3
P2X receptors: dawn of the post-structure era.
Trends Biochem Sci. 2010 Feb;35(2):83-90. doi: 10.1016/j.tibs.2009.09.006. Epub 2009 Oct 15.
4
Reactive oxygen species potentiate the P2X2 receptor activity through intracellular Cys430.
J Neurosci. 2009 Sep 30;29(39):12284-91. doi: 10.1523/JNEUROSCI.2096-09.2009.
5
Crystal structure of the ATP-gated P2X(4) ion channel in the closed state.
Nature. 2009 Jul 30;460(7255):592-8. doi: 10.1038/nature08198.
6
Characterisation of the R276A gain-of-function mutation in the ectodomain of murine P2X7.
Purinergic Signal. 2009 Jun;5(2):151-61. doi: 10.1007/s11302-009-9134-6. Epub 2009 Feb 21.
7
Signaling at purinergic P2X receptors.
Annu Rev Physiol. 2009;71:333-59. doi: 10.1146/annurev.physiol.70.113006.100630.
8
Gating the pore of P2X receptor channels.
Nat Neurosci. 2008 Aug;11(8):883-7. doi: 10.1038/nn.2151. Epub 2008 Jun 29.
10
Inter-subunit disulfide cross-linking in homomeric and heteromeric P2X receptors.
Eur Biophys J. 2009 Mar;38(3):329-38. doi: 10.1007/s00249-008-0325-9. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验