Put R, Xu Q S, Massart D L, Vander Heyden Y
ChemoAC, Department of Pharmaceutical and Biomedical Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
J Chromatogr A. 2004 Nov 5;1055(1-2):11-9. doi: 10.1016/j.chroma.2004.07.112.
The multivariate adaptive regression splines (MARS) methodology was applied to build quantitative structure-retention relationships (QSRRs). The response (dependent variable) in the MARS models consisted of the logarithms of the extrapolated retention factors (log k(w)) of 83 structurally diverse drugs on a Unisphere PBD column, using isocratic elutions at pH 11.7. A set of 266 molecular descriptors was used as predictor (independent) variables in the MARS model building. The optimal MARS model uses 34 basis functions to describe the retention and has acceptable predictive properties for new objects. The molecular descriptors included in the model describe hydrophobicity, molecular size, complexity, shape and polarisability. Some additional MARS models were created using alternative strategies. These include models with log P as the single predictor and models obtained with only the three most important molecular descriptors. The use of classification and regression trees (CART) as feature selection technique for predictor variables used in the MARS model was also investigated. Further, it is also studied whether allowing quadratic terms instead of interaction terms might lead to better MARS models.
应用多元自适应回归样条法(MARS)建立定量结构-保留关系(QSRR)。MARS模型中的响应(因变量)由83种结构各异的药物在Unisphere PBD柱上,于pH 11.7等度洗脱时的外推保留因子对数(log k(w))组成。在构建MARS模型时,一组266个分子描述符用作预测(独立)变量。最优的MARS模型使用34个基函数来描述保留情况,对新对象具有可接受的预测性能。模型中包含的分子描述符描述了疏水性、分子大小、复杂性、形状和极化率。使用替代策略创建了一些其他的MARS模型。这些模型包括以log P作为单一预测变量的模型以及仅使用三个最重要分子描述符得到的模型。还研究了使用分类和回归树(CART)作为MARS模型中预测变量的特征选择技术。此外,还研究了允许使用二次项而非交互项是否可能导致更好的MARS模型。