Suppr超能文献

PM10 浓度在希洪港(西班牙)的演变和预测。

Evolution and forecasting of PM10 concentration at the Port of Gijon (Spain).

机构信息

Department of Mathematics, Faculty of Sciences, University of Oviedo, c/ Federico García Lorca 18, 33007, Oviedo, Spain.

Department of Physics, Faculty of Sciences, University of Oviedo, c/ Federico García Lorca 18, 33007, Oviedo, Spain.

出版信息

Sci Rep. 2020 Jul 16;10(1):11716. doi: 10.1038/s41598-020-68636-5.

Abstract

The name PM refers to small particles with a diameter of less than 10 microns. The present research analyses different models capable of predicting PM concentration using the previous values of PM, SO, NO, NO, CO and O as input variables. The information for model training uses data from January 2010 to December 2017. The models trained were autoregressive integrated moving average (ARIMA), vector autoregressive moving average (VARMA), multilayer perceptron neural networks (MLP), support vector machines as regressor (SVMR) and multivariate adaptive regression splines. Predictions were performed from 1 to 6 months in advance. The performance of the different models was measured in terms of root mean squared errors (RMSE). For forecasting 1 month ahead, the best results were obtained with the help of a SVMR model of six variables that gave a RMSE of 4.2649, but MLP results were very close, with a RMSE value of 4.3402. In the case of forecasts 6 months in advance, the best results correspond to an MLP model of six variables with a RMSE of 6.0873 followed by a SVMR also with six variables that gave an RMSE result of 6.1010. For forecasts both 1 and 6 months ahead, ARIMA outperformed VARMA models.

摘要

PM 是指直径小于 10 微米的小颗粒。本研究分析了使用 PM、SO、NO、NO、CO 和 O 的先前值作为输入变量来预测 PM 浓度的不同模型。模型训练使用了 2010 年 1 月至 2017 年 12 月的数据。训练的模型包括自回归综合移动平均 (ARIMA)、向量自回归移动平均 (VARMA)、多层感知机神经网络 (MLP)、支持向量机回归器 (SVMR) 和多元自适应回归样条。预测提前 1 至 6 个月进行。不同模型的性能通过均方根误差 (RMSE) 来衡量。对于提前 1 个月的预测,使用六个变量的 SVMR 模型得到的最佳结果为 RMSE 为 4.2649,但 MLP 的结果非常接近,RMSE 值为 4.3402。对于提前 6 个月的预测,最佳结果对应于具有 RMSE 为 6.0873 的六个变量的 MLP 模型,其次是具有六个变量的 SVMR,RMSE 结果为 6.1010。对于提前 1 个月和 6 个月的预测,ARIMA 模型优于 VARMA 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验