Suppr超能文献

用于小区域分类数据的贝叶斯无应答模型:骨密度与年龄的应用

Bayesian non-response models for categorical data from small areas: an application to BMD and age.

作者信息

Nandram Balgobin, Liu Ning, Choi Jai Won, Cox Lawrence

机构信息

National Center for Health Statistics, CDC 3311 Toledo Road, Hyattsville, MD 20782, USA.

出版信息

Stat Med. 2005 Apr 15;24(7):1047-74. doi: 10.1002/sim.1985.

Abstract

We provide a Bayesian analysis of data categorized into two levels of age (younger than 50 years, at least 50 years) and three levels of bone mineral density (normal, osteopenia, osteoporosis) for white females at least 20 years old in the third National Health and Nutrition Examination Survey. For the sample, the age of each individual is known, but some individuals did not have their BMD measured. We use two types of models: In the ignorable non-response models the propensity to respond does not depend on BMD and age of an individual, while in the non-ignorable non-response models it does. These are the baseline models which are used to derive all models for testing. Our non-ignorable non-response models are 'close' to the ignorable non-response models, thereby reducing the effects of the assumptions about non-respondents that cannot be tested in non-response models. We have data from 35 counties, small areas, and therefore our models are hierarchical, a feature that allows a 'borrowing of strength' across the counties, and they provide a substantial reduction in variation. The non-ignorable non-response models are generalizations of the ignorable non-response models, and therefore, the non-ignorable non-response models allow broader inference. The joint posterior density of the parameters for each model is complex, and therefore, we fit each model using Markov chain Monte Carlo methods to obtain samples which are used to make inference about BMD and age. For each county we can estimate the proportion of individuals in each BMD and age cell of the categorical table, and we can assess the relation between BMD and age using the Bayes factor. A sensitivity analysis shows that there are differences (typically small) in inference that permits different levels of association between BMD and age. A simulation study shows that there is not much difference between the baseline ignorable and non-ignorable non-response models.

摘要

我们对第三次全国健康与营养检查调查中至少20岁的白人女性的数据进行了贝叶斯分析,这些数据按年龄的两个水平(小于50岁、至少50岁)和骨矿物质密度的三个水平(正常、骨质减少、骨质疏松)进行分类。对于该样本,每个个体的年龄是已知的,但一些个体未进行骨密度测量。我们使用两种类型的模型:在可忽略不响应模型中,响应倾向不依赖于个体的骨密度和年龄,而在不可忽略不响应模型中则依赖。这些是用于推导所有检验模型的基线模型。我们的不可忽略不响应模型与可忽略不响应模型“接近”,从而减少了在不响应模型中无法检验的关于不响应者假设的影响。我们有来自35个县(小区域)的数据,因此我们的模型是分层的,这一特征允许在各县之间“借用力量”,并且它们能大幅减少变异性。不可忽略不响应模型是可忽略不响应模型的推广,因此,不可忽略不响应模型允许进行更广泛的推断。每个模型参数的联合后验密度很复杂,因此,我们使用马尔可夫链蒙特卡罗方法拟合每个模型以获得用于对骨密度和年龄进行推断的样本。对于每个县,我们可以估计分类表中每个骨密度和年龄单元格中的个体比例,并且我们可以使用贝叶斯因子评估骨密度和年龄之间的关系。敏感性分析表明,在允许骨密度和年龄之间存在不同关联水平的推断中存在差异(通常较小)。模拟研究表明,基线可忽略和不可忽略不响应模型之间没有太大差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验