Deng Bo
Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
Chaos. 2004 Dec;14(4):1083-92. doi: 10.1063/1.1814191.
The "tea-cup" attractor of a classical prey-predator-superpredator food chain model is studied analytically. Under the assumption that each species has its own time scale, ranging from fast for the prey to intermediate for the predator and to slow for the superpredator, the model is transformed into a singular perturbed system. It is demonstrated that the singular limit of the attractor contains a canard singularity. Singular return maps are constructed for which some subdynamics are shown to be equivalent to chaotic shift maps. Parameter regions in which the described chaotic dynamics exist are explicitly given.
对经典的猎物 - 捕食者 - 超级捕食者食物链模型的“茶杯”吸引子进行了分析研究。假设每个物种都有其自身的时间尺度,从猎物的快速时间尺度到捕食者的中间时间尺度,再到超级捕食者的缓慢时间尺度,该模型被转化为一个奇异摄动系统。结果表明,吸引子的奇异极限包含一个鸭嘴奇点。构建了奇异返回映射,其中一些子动力学被证明等同于混沌移位映射。明确给出了存在所述混沌动力学的参数区域。