Campillay-Llanos William, Ortega-Farías Samuel, Díaz Gonzalo A, López-Flores Marlon M
Departamento de Ciencias Matemáticas y Físicas, Universidad Católica de Temuco, Rudecindo Ortega 02950, 4813302, Temuco, Región de la Araucania, Chile.
Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Región del Maule, Chile.
Sci Rep. 2025 Sep 2;15(1):32300. doi: 10.1038/s41598-025-16157-4.
Biological control in plant-insect systems represents a fundamental challenge in theoretical ecology, particularly within agricultural systems. This challenge is amplified by climate change, which, through increasing temperatures, has induced variations in insect body size, altering their ecological interactions and, consequently, their abundance. Although allometric relationships provide a static description of the relationship between body size, metabolism, and population density, dynamic models are needed to adequately simulate agroecological systems. In this context, incorporating body size as a dynamic parameter in trophic models offers an analytic approach to linking climate-induced morphological changes with the effectiveness of biological control and the indirect effects on plants. The main objective of this study is to develop a mathematical model based on a three-level food chain (plant-pest-biological control), where body size is incorporated as a key parameter in the dynamics of the plant-pest biological control system. Specifically, the goals are to: 1) Identify the relationships between the body sizes of species that limit population densities and prevent coexistence. 2) Determine the body size relationships that promote the success of biological control. 3) Model the trophic cascade effect as a function of body size and analyze its indirect impact on plants. Through theoretical analysis, indicators based on body sizes are proposed to evaluate the effectiveness of biological control strategies. The results suggest that allometric relationships between body sizes can modify the qualitative behavior of the system, offering a potential tool for evaluating biological control strategies based on these indicators. This study offers a tool for evaluating biological control strategies based on key indicators, complementing experimental designs and advancing integrated pest management through an interdisciplinary framework in which biomathematical models serve as a foundation for digital agriculture.
植物 - 昆虫系统中的生物防治是理论生态学中的一项基本挑战,在农业系统中尤为如此。气候变化加剧了这一挑战,它通过升高温度,导致昆虫体型发生变化,改变了它们的生态相互作用,进而影响了它们的数量。尽管异速生长关系提供了体型、新陈代谢和种群密度之间关系的静态描述,但仍需要动态模型来充分模拟农业生态系统。在这种背景下,将体型作为营养模型中的动态参数,为将气候引起的形态变化与生物防治效果及对植物的间接影响联系起来提供了一种分析方法。本研究的主要目标是基于三级食物链(植物 - 害虫 - 生物防治)开发一个数学模型,其中体型被纳入植物 - 害虫生物防治系统的动态过程中的关键参数。具体而言,目标是:1)确定限制种群密度并阻止共存的物种体型之间的关系。2)确定促进生物防治成功的体型关系。3)将营养级联效应建模为体型的函数,并分析其对植物的间接影响。通过理论分析提出基于体型的指标来评估生物防治策略的有效性。结果表明,体型之间的异速生长关系可以改变系统的定性行为,为基于这些指标评估生物防治策略提供了一个潜在工具。本研究提供了一个基于关键指标评估生物防治策略的工具,通过跨学科框架补充实验设计并推进综合害虫管理,其中生物数学模型是数字农业的基础。