Zhong Wei-Hong, Li Jiang, Xu Luoyu R, Michel Jason A, Sullivan Lisa M, Lukehart Charles M
Department of Chemistry, Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.
J Nanosci Nanotechnol. 2004 Sep;4(7):794-802. doi: 10.1166/jnn.2004.096.
Processing methods have been optimized for the formation of graphitic carbon nanofiber (GCNF)/epoxy nanocomposites containing GCNFs highly dispersed throughout a thermoset epoxy matrix. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules (GCNF-HDA) capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using high-power ultrasonication. GCNF-HDA nanofibers are dispersed in epoxy resin at 0.3 wt.% loading using variable levels of ultrasonication processing prior to thermal curing. Effects of sonication power on the quality of the GCNF-HDA/epoxy material obtained after curing have been determined from flexural property measurements, thermomechanical analysis and SEM/TEM imaging. GCNF-HDA/epoxy material of the highest quality is obtained using low-power sonication, although high-power sonication for short periods gives improved flexural properties without lowering the glass transition temperature. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale.
已经对加工方法进行了优化,以形成石墨化碳纳米纤维(GCNF)/环氧树脂纳米复合材料,其中GCNF高度分散在热固性环氧基质中。具有人字形原子结构的GCNF用双功能己二胺连接分子(GCNF-HDA)进行表面衍生化,该分子在热固化过程中能够与环氧基质共价结合,并使用高功率超声处理将其切割成更小的尺寸。在热固化之前,使用不同水平的超声处理将GCNF-HDA纳米纤维以0.3 wt.%的负载量分散在环氧树脂中。通过弯曲性能测量、热机械分析和SEM/TEM成像确定了超声功率对固化后获得的GCNF-HDA/环氧材料质量的影响。使用低功率超声可获得质量最高的GCNF-HDA/环氧材料,尽管短时间的高功率超声可改善弯曲性能而不降低玻璃化转变温度。在纳米尺度上,GCNF组分具有良好的分散性和聚合物润湿性。