Suppr超能文献

在模型优化中直接纳入实验阶段信息。

Direct incorporation of experimental phase information in model refinement.

作者信息

Skubák Pavol, Murshudov Garib N, Pannu Navraj S

机构信息

Biophysical Structural Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.

出版信息

Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2196-201. doi: 10.1107/S0907444904019079. Epub 2004 Nov 26.

Abstract

The incorporation of prior phase information into a maximum-likelihood formalism has been shown to strengthen model refinement. However, the currently available likelihood refinement target using prior phase information has shortcomings; the 'phased' refinement target considers experimental phase information indirectly and statically in the form of Hendrickson-Lattman coefficients. Furthermore, the current refinement target implicitly assumes that the prior phase information is independent of the calculated model structure factor. This paper describes the derivation of a multivariate likelihood function that overcomes these shortcomings and directly incorporates experimental phase information from a single-wavelength anomalous diffraction (SAD) experiment. This function, which simultaneously refines heavy-atom and model parameters, has been implemented in the refinement program REFMAC5. The SAD function used in conjunction with the automated model-building procedures of ARP/wARP leads to a successful solution when current likelihood functions fail in a test case shown.

摘要

将先前的相位信息纳入最大似然形式已被证明能加强模型优化。然而,目前可用的利用先前相位信息的似然优化目标存在缺陷;“分阶段”优化目标以亨德里克森 - 拉特曼系数的形式间接且静态地考虑实验相位信息。此外,当前的优化目标隐含地假设先前的相位信息与计算出的模型结构因子无关。本文描述了一种多元似然函数的推导,该函数克服了这些缺点,并直接纳入来自单波长反常衍射(SAD)实验的实验相位信息。这个同时优化重原子和模型参数的函数已在优化程序REFMAC5中实现。当当前似然函数在所示测试案例中失败时,与ARP/wARP的自动模型构建程序结合使用的SAD函数能成功得到解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验