Sullivan P G, Rabchevsky A G, Waldmeier P C, Springer J E
Spinal Cord and Brain Injury Research Center, 240 HSRB, University of Kentucky, Lexington, KY 40536-0305, USA.
J Neurosci Res. 2005;79(1-2):231-9. doi: 10.1002/jnr.20292.
Experimental traumatic brain injury (TBI) and spinal cord injury (SCI) result in a rapid and significant necrosis of neuronal tissue at the site of injury. In the ensuing hours and days, secondary injury exacerbates the primary damage, resulting in significant neurologic dysfunction. It is believed that alterations in excitatory amino acids (EAA), increased reactive oxygen species (ROS), and the disruption of Ca(2+) homeostasis are major factors contributing to the ensuing neuropathology. Mitochondria serve as the powerhouse of the cell by maintaining ratios of ATP:ADP that thermodynamically favor the hydrolysis of ATP to ADP + P(i), yet a byproduct of this process is the generation of ROS. Proton-pumping by components of the electron transport system (ETS) generates a membrane potential (DeltaPsi) that can then be used to phosphorylate ADP or sequester Ca(2+) out of the cytosol into the mitochondrial matrix. This allows mitochondria to act as cellular Ca(2+) sinks and to be in phase with changes in cytosolic Ca(2+) levels. Under extreme loads of Ca(2+), however, opening of the mitochondrial permeability transition pore (mPTP) results in the extrusion of mitochondrial Ca(2+) and other high- and low-molecular weight components. This catastrophic event discharges DeltaPsi and uncouples the ETS from ATP production. Cyclosporin A (CsA), a potent immunosuppressive drug, inhibits mitochondrial permeability transition (mPT) by binding to matrix cyclophilin D and blocking its binding to the adenine nucleotide translocator. Peripherally administered CsA attenuates mitochondrial dysfunction and neuronal damage in an experimental rodent model of TBI, in a dose-dependent manner. The underlying mechanism of neuroprotection afforded by CsA is most likely via interaction with the mPTP because the immunosuppressant FK506, which has no effect on the mPT, was not neuroprotective. When CsA was administrated after experimental SCI at the same dosage and regimen used TBI paradigms, however, it had no beneficial neuroprotective effects. This review takes a comprehensive and critical look at the evidence supporting the role for mPT in central nervous system (CNS) trauma and highlights the differential responses of CNS mitochondria to mPT induction and the implications this has for therapeutically targeting the mPT in TBI and SCI.
实验性创伤性脑损伤(TBI)和脊髓损伤(SCI)会导致损伤部位的神经元组织迅速且显著地坏死。在随后的数小时和数天内,继发性损伤会加剧原发性损伤,导致严重的神经功能障碍。据信,兴奋性氨基酸(EAA)的改变、活性氧(ROS)的增加以及Ca(2+) 稳态的破坏是导致随后神经病理学的主要因素。线粒体通过维持ATP:ADP的比率来充当细胞的动力源,这种比率在热力学上有利于ATP水解为ADP + P(i),然而这个过程的一个副产品是ROS的产生。电子传递系统(ETS)的成分进行质子泵浦会产生膜电位(ΔΨ),然后可用于将ADP磷酸化或将Ca(2+) 从细胞质中隔离到线粒体基质中。这使得线粒体能够充当细胞内Ca(2+) 的汇,并与细胞质中Ca(2+) 水平的变化同步。然而,在Ca(2+) 的极端负荷下,线粒体通透性转换孔(mPTP)的开放会导致线粒体Ca(2+) 以及其他高分子量和低分子量成分的排出。这一灾难性事件会使ΔΨ消失,并使ETS与ATP生成解偶联。环孢素A(CsA)是一种强效免疫抑制药物,它通过与基质亲环蛋白D结合并阻止其与腺嘌呤核苷酸转位酶结合来抑制线粒体通透性转换(mPT)。在实验性啮齿动物TBI模型中,外周给予CsA可剂量依赖性地减轻线粒体功能障碍和神经元损伤。CsA提供神经保护的潜在机制很可能是通过与mPTP相互作用,因为对mPT没有影响的免疫抑制剂FK506没有神经保护作用。然而,当以与TBI模型相同的剂量和方案在实验性SCI后给予CsA时,它没有产生有益的神经保护作用。这篇综述全面且批判性地审视了支持mPT在中枢神经系统(CNS)创伤中作用的证据,并强调了CNS线粒体对mPT诱导的不同反应以及这对在TBI和SCI中以mPT为治疗靶点的意义。