Bayona-Bafaluy Maria Pilar, Müller Stefan, Moraes Carlos T
Department of Neurology, University of Miami School of Medicine, USA.
Mol Biol Evol. 2005 Mar;22(3):716-24. doi: 10.1093/molbev/msi059. Epub 2004 Dec 1.
Nuclear and mitochondrial genomes have to work in concert to generate a functional oxidative phosphorylation (OXPHOS) system. We have previously shown that we could restore partial OXPHOS function when chimpanzee or gorilla mitochondrial DNA (mtDNA) were introduced into human cells lacking mtDNA. However, we were unable to maintain orangutan mitochondrial DNA in a human cell. We have now produced chimpanzee, gorilla, orangutan, and baboon cells lacking mtDNA and attempted to introduce mtDNA from different apes into them. Surprisingly, we were able to maintain human mtDNA in an orangutan nuclear background, even though these cells showed severe OXPHOS abnormalities, including a complete absence of assembled ATP synthetase. Phylogenetic analysis of complex V mtDNA-encoded subunits showed that they are among the most evolutionarily divergent components of the mitochondrial genome between orangutan and the other apes. Our studies showed that adaptive coevolution of nuclear and mitochondrial components in apes can be fast and accelerate in recent branches of anthropoid primates.
细胞核和线粒体基因组必须协同工作,以产生一个功能性的氧化磷酸化(OXPHOS)系统。我们之前已经表明,当将黑猩猩或大猩猩的线粒体DNA(mtDNA)引入缺乏mtDNA的人类细胞中时,我们能够恢复部分OXPHOS功能。然而,我们无法在人类细胞中维持红毛猩猩的线粒体DNA。我们现在已经制备了缺乏mtDNA的黑猩猩、大猩猩、红毛猩猩和狒狒细胞,并试图将不同猿类的mtDNA引入其中。令人惊讶的是,我们能够在红毛猩猩的核背景中维持人类mtDNA,尽管这些细胞表现出严重的OXPHOS异常,包括完全缺乏组装好的ATP合酶。对复合体V中mtDNA编码亚基的系统发育分析表明,它们是红毛猩猩与其他猿类线粒体基因组中进化差异最大的成分之一。我们的研究表明,猿类细胞核和线粒体成分的适应性共同进化可以很快,并且在类人猿灵长类动物的最近分支中加速。