Suppr超能文献

数字化图像之间哈钦森度量的高效计算。

Efficient computation of the Hutchinson metric between digitized images.

作者信息

Drakopoulos Vassileios, Nikolaou Nikolaos P

机构信息

Department of Informatics and Telecommunications, Theoretical Informatics, University of Athens, Panepistimioupolis 157 84, Athens, Greece.

出版信息

IEEE Trans Image Process. 2004 Dec;13(12):1581-8. doi: 10.1109/tip.2004.837550.

Abstract

The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.

摘要

哈钦森度量是分形图像处理中用于衡量两个图像差异的一种自然度量。本文考虑了一种计算两个任意数字化图像之间哈钦森度量问题的有效解决方案。这里提出的技术基于物体在数字化屏幕上的投影形状,可作为一种有效方法来确定原始图像与可能经过压缩和解码的图像之间的误差。为了测试我们方法的性能,我们将其应用于比较分形对象对,以及将真实世界图像与相应的重建图像进行比较。

相似文献

4
Normal improvement for point rendering.点渲染的正常改进。
IEEE Comput Graph Appl. 2004 Jul-Aug;24(4):53-6. doi: 10.1109/mcg.2004.14.
8
Flexible point-based rendering on mobile devices.移动设备上的灵活基于点的渲染。
IEEE Comput Graph Appl. 2004 Jul-Aug;24(4):57-63. doi: 10.1109/mcg.2004.5.
9
Affine invariant features from the trace transform.来自迹变换的仿射不变特征。
IEEE Trans Pattern Anal Mach Intell. 2004 Jan;26(1):30-44. doi: 10.1109/tpami.2004.1261077.
10
Fast k-nearest neighbor classification using cluster-based trees.使用基于聚类的树进行快速k近邻分类。
IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):525-8. doi: 10.1109/TPAMI.2004.1265868.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验