Suppr超能文献

Robust image-adaptive data hiding using erasure and error correction.

作者信息

Solanki Kaushal, Jacobsen Noah, Madhow Upamanyu, Manjunath B S, Chandrasekaran Shivkumar

机构信息

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

出版信息

IEEE Trans Image Process. 2004 Dec;13(12):1627-39. doi: 10.1109/tip.2004.837557.

Abstract

Information-theoretic analyses for data hiding prescribe embedding the hidden data in the choice of quantizer for the host data. In this paper, we propose practical realizations of this prescription for data hiding in images, with a view to hiding large volumes of data with low perceptual degradation. The hidden data can be recovered reliably under attacks, such as compression and limited amounts of image tampering and image resizing. The three main findings are as follows. 1) In order to limit perceivable distortion while hiding large amounts of data, hiding schemes must use image-adaptive criteria in addition to statistical criteria based on information theory. 2) The use of local criteria to choose where to hide data can potentially cause desynchronization of the encoder and decoder. This synchronization problem is solved by the use of powerful, but simple-to-implement, erasures and errors correcting codes, which also provide robustness against a variety of attacks. 3) For simplicity, scalar quantization-based hiding is employed, even though information-theoretic guidelines prescribe vector quantization-based methods. However, an information-theoretic analysis for an idealized model is provided to show that scalar quantization-based hiding incurs approximately only a 2-dB penalty in terms of resilience to attack.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验