Suppr超能文献

经皮离子电渗转运的房室模型:I. 体外模型的推导与应用。

Compartmental modeling of transdermal iontophoretic transport: I. In vitro model derivation and application.

作者信息

Nugroho Akhmad Kharis, Della Pasqua Oscar, Danhof Meindert, Bouwstra Joke A

机构信息

Leiden/Amsterdam Center for Drug Research, 2300 RA Leiden, The Netherlands.

出版信息

Pharm Res. 2004 Nov;21(11):1974-84. doi: 10.1023/b:pham.0000048187.54125.ac.

Abstract

PURPOSE

The objective of this study was to develop a family of compartmental models to describe in a strictly quantitative manner the transdermal iontophoretic transport of drugs in vitro.

METHODS

Two structurally different compartmental models describing the in vitro transport during iontophoresis and one compartmental model describing the in vitro transport in post-iontophoretic period are proposed. These models are based on the mass transfer from the donor compartment to the acceptor compartment via the skin as an intermediate compartment. In these models, transdermal iontophoretic transport is characterized by 5 parameters: 1) kinetic lag time (tL), 2) steady-state flux during iontophoresis (Jss), 3) skin release rate constant (K(R)), 4) the first-order rate constant of the iontophoretic driving force from the skin to the acceptor compartment (I1), and 5) passive flux in the post-iontophoretic period (Jpas). The developed models were applied to data on the iontophoretic transport in human stratum corneum in vitro of R-apomorphine after pretreatment with phosphate buffered saline pH 7.4 (PBS) and after pretreatment with surfactant (SFC), as well as the iontophoretic transport of 0.5 mg ml(-1) rotigotine at pH 5 (RTG).

RESULTS

All of the proposed models could be fitted to the transport data of PBS, SFC, and RTG groups both during the iontophoresis and in the post-iontophoretic period. The incorporation of parameter I1 failed to improve the fitting performance of the model. This might indicate a negligible contribution of iontophoretic driving force to the mass transfer in the direction from the skin to the acceptor compartment, although it plays an important role in loading the skin with the drug. The estimated values of Jss of PBS, SFC, and RTG were identical (p > 0.05) to the values obtained with the diffusion lag time method. Moreover, time required to achieve steady-state flux can be estimated based on the parameter tL and the reciprocal value of parameter K(R). In addition, accumulation of drug molecules in the skin is reflected in a reduction of the value of the K(R) parameter.

CONCLUSIONS

The developed in vitro models demonstrated their strength and consistency to describe the drug transport during and post-iontophoresis.

摘要

目的

本研究的目的是建立一系列房室模型,以严格定量的方式描述药物在体外的经皮离子导入转运。

方法

提出了两种描述离子导入过程中体外转运的结构不同的房室模型,以及一种描述离子导入后阶段体外转运的房室模型。这些模型基于药物从供体室经皮肤作为中间室向受体室的传质过程。在这些模型中,经皮离子导入转运由5个参数表征:1)动力学滞后时间(tL),2)离子导入期间的稳态通量(Jss),3)皮肤释放速率常数(K(R)),4)从皮肤到受体室的离子导入驱动力的一级速率常数(I1),以及5)离子导入后阶段的被动通量(Jpas)。所建立的模型应用于在pH 7.4的磷酸盐缓冲盐水(PBS)预处理后和表面活性剂(SFC)预处理后R-阿扑吗啡在人角质层中的离子导入转运数据,以及pH 5时0.5 mg/ml罗替戈汀(RTG)的离子导入转运数据。

结果

所有提出的模型在离子导入期间和离子导入后阶段均能拟合PBS、SFC和RTG组的转运数据。参数I1的纳入未能改善模型的拟合性能。这可能表明离子导入驱动力对从皮肤到受体室方向的传质贡献可忽略不计,尽管它在使皮肤加载药物方面起重要作用。PBS、SFC和RTG的Jss估计值与用扩散滞后时间法获得的值相同(p>0.05)。此外,可根据参数tL和参数K(R)的倒数估计达到稳态通量所需的时间。此外,药物分子在皮肤中的积累反映在K(R)参数值的降低上。

结论

所建立的体外模型证明了其在描述离子导入期间和离子导入后药物转运方面的优势和一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验