Suppr超能文献

胆囊收缩素对大鼠脑干运动神经元作用的体外分析。

In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons.

作者信息

Zheng Zhongling, Lewis Mark W, Travagli R Alberto

机构信息

Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, Louisiana 70808, USA.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2005 May;288(5):G1066-73. doi: 10.1152/ajpgi.00497.2004. Epub 2004 Dec 9.

Abstract

Using whole cell patch clamp in thin brain stem slices, we tested the effects of cholecystokinin (CCK) on identified gastric-projecting neurons of the rat dorsal motor nucleus of the vagus (DMV). Perfusion with the sulfated form of CCK octapeptide (CCK8s, 30 pM-300 nM, EC50 approximately 4 nM) induced a concentration-dependent inward current in 35 and 41% of corpus- and antrum/pylorus-projecting DMV neurons, respectively. Conversely, none of the fundus-projecting DMV neurons responded to perfusion with CCK8s. The CCK8s-induced inward current was accompanied by a 65 +/- 17% increase in membrane input resistance and reversed at 90 +/- 4 mV, indicating that the excitatory effects of CCK8s were mediated by the closure of a potassium conductance. Pretreatment with the synaptic blocker TTX (0.3-1 microM) reduced the CCK8s-induced current, suggesting that a portion of the CCK8s-induced current was mediated indirectly via an action on presynaptic neurons apposing the DMV membrane. Pretreatment with the selective CCK-A receptor antagonist lorglumide (0.3-3 microM) attenuated the CCK8s-induced inward current in a concentration-dependent manner, with a maximum inhibition of 69 +/- 12% obtained with 3 microM lorglumide. Conversely, pretreatment with the selective CCK-B antagonist triglumide did not attenuate the CCK8s-induced inward current; pretreatment with triglumide (3 microM) and lorglumide (1 microM) attenuated the CCK8s-induced current to the same extent as pretreatment with lorglumide alone. Immunohistochemical experiments showed that CCK-A receptors were localized on the membrane of 34, 65, and 60% of fundus-, corpus-, and antrum/pylorus-projecting DMV neurons, respectively. Our data indicate that CCK-A receptors are present on a subpopulation of gastric-projecting neurons and that their activation leads to excitation of the DMV membrane.

摘要

我们使用全细胞膜片钳技术,在薄脑干切片中测试了胆囊收缩素(CCK)对大鼠迷走神经背核(DMV)中已鉴定的投射至胃的神经元的影响。用硫酸化形式的CCK八肽(CCK8s,30 pM - 300 nM,半数有效浓度约为4 nM)灌注分别在35%的投射至胃体和41%的投射至胃窦/幽门的DMV神经元中诱导出浓度依赖性内向电流。相反,投射至胃底的DMV神经元对CCK8s灌注均无反应。CCK8s诱导的内向电流伴随着膜输入电阻增加65±17%,并在90±4 mV时反转,表明CCK8s的兴奋作用是通过钾电导的关闭介导的。用突触阻滞剂TTX(0.3 - 1 μM)预处理可降低CCK8s诱导的电流,提示部分CCK8s诱导的电流是通过作用于与DMV膜相邻的突触前神经元间接介导的。用选择性CCK - A受体拮抗剂洛谷胺(0.3 - 3 μM)预处理以浓度依赖性方式减弱CCK8s诱导的内向电流,3 μM洛谷胺时最大抑制率为%69±12。相反,用选择性CCK - B拮抗剂曲谷胺预处理并未减弱CCK8s诱导的内向电流;用曲谷胺(3 μM)和洛谷胺(1 μM)预处理减弱CCK8s诱导电流程度与单独用洛谷胺预处理相同。免疫组织化学实验表明,CCK - A受体分别定位于投射至胃底、胃体和胃窦/幽门的DMV神经元膜上的比例为34%、65%和60%。我们的数据表明,CCK - A受体存在于投射至胃的神经元亚群中,其激活导致DMV膜兴奋。

相似文献

1
In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons.
Am J Physiol Gastrointest Liver Physiol. 2005 May;288(5):G1066-73. doi: 10.1152/ajpgi.00497.2004. Epub 2004 Dec 9.
2
Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons.
Am J Physiol Gastrointest Liver Physiol. 2007 Aug;293(2):G484-92. doi: 10.1152/ajpgi.00116.2007. Epub 2007 Jun 14.
4
Cholecystokinin depolarizes rat thalamic reticular neurons by suppressing a K+ conductance.
J Neurophysiol. 1995 Sep;74(3):990-1000. doi: 10.1152/jn.1995.74.3.990.
6
Effects of thyrotropin-releasing hormone on neurons in rat dorsal motor nucleus of the vagus, in vitro.
Am J Physiol. 1992 Oct;263(4 Pt 1):G508-17. doi: 10.1152/ajpgi.1992.263.4.G508.
7
Mechanism of action of baclofen in rat dorsal motor nucleus of the vagus.
Am J Physiol Gastrointest Liver Physiol. 2001 Jun;280(6):G1106-13. doi: 10.1152/ajpgi.2001.280.6.G1106.
9
Cholecystokinin action on layer 6b neurons in somatosensory cortex.
Brain Res. 2009 Jul 28;1282:10-9. doi: 10.1016/j.brainres.2009.05.061. Epub 2009 Jun 2.

引用本文的文献

1
Insulin Preferentially Regulates the Activity of Parasympathetic Preganglionic Neurons over Sympathetic Preganglionic Neurons.
Endocrinol Metab (Seoul). 2023 Oct;38(5):545-556. doi: 10.3803/EnM.2023.1725. Epub 2023 Sep 26.
2
Short-pulsed micro-magnetic stimulation of the vagus nerve.
Front Physiol. 2022 Oct 7;13:938101. doi: 10.3389/fphys.2022.938101. eCollection 2022.
3
Autonomic control of energy balance and glucose homeostasis.
Exp Mol Med. 2022 Apr;54(4):370-376. doi: 10.1038/s12276-021-00705-9. Epub 2022 Apr 26.
5
Correlation between the motility of the proximal antrum and the high-frequency power of heart rate variability in freely moving rats.
Neurogastroenterol Motil. 2019 Aug;31(8):e13633. doi: 10.1111/nmo.13633. Epub 2019 May 22.
6
Validation and characterization of a novel method for selective vagal deafferentation of the gut.
Am J Physiol Gastrointest Liver Physiol. 2017 Oct 1;313(4):G342-G352. doi: 10.1152/ajpgi.00095.2017. Epub 2017 Jul 13.
7
Vagal neurocircuitry and its influence on gastric motility.
Nat Rev Gastroenterol Hepatol. 2016 Jul;13(7):389-401. doi: 10.1038/nrgastro.2016.76. Epub 2016 May 25.
8
Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
J Physiol. 2015 Jan 1;593(1):285-303. doi: 10.1113/jphysiol.2014.282806. Epub 2014 Dec 2.
10
Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.
J Physiol. 2013 May 1;591(9):2357-72. doi: 10.1113/jphysiol.2012.249268. Epub 2013 Mar 4.

本文引用的文献

1
Glucose does not activate nonadrenergic, noncholinergic inhibitory neurons in the rat stomach.
Am J Physiol Regul Integr Comp Physiol. 2005 Mar;288(3):R742-50. doi: 10.1152/ajpregu.00561.2004. Epub 2004 Nov 18.
2
Gastrointestinal mechanisms of satiation for food.
Physiol Behav. 2004 Apr;81(2):249-73. doi: 10.1016/j.physbeh.2004.02.012.
3
Gastrointestinal satiety signals II. Cholecystokinin.
Am J Physiol Gastrointest Liver Physiol. 2004 Feb;286(2):G183-8. doi: 10.1152/ajpgi.00434.2003.
4
Abdominal vagal mediation of the satiety effects of CCK in rats.
Am J Physiol Regul Integr Comp Physiol. 2004 Jun;286(6):R1005-12. doi: 10.1152/ajpregu.00646.2003. Epub 2003 Dec 30.
5
Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake.
Am J Physiol Gastrointest Liver Physiol. 2004 Jan;286(1):G7-13. doi: 10.1152/ajpgi.00448.2003.
6
Within-meal gut feedback signaling.
Int J Obes Relat Metab Disord. 2001 Dec;25 Suppl 5:S39-41. doi: 10.1038/sj.ijo.0801910.
7
Receptors and transmission in the brain-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits.
Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G595-601. doi: 10.1152/ajpgi.2001.281.3.G595.
8
Postprandial neuronal activation in the nucleus of the solitary tract is partly mediated by CCK-A receptors.
Am J Physiol Regul Integr Comp Physiol. 2001 Jul;281(1):R222-9. doi: 10.1152/ajpregu.2001.281.1.R222.
9
Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus.
Am J Physiol Gastrointest Liver Physiol. 2001 Mar;280(3):G361-7. doi: 10.1152/ajpgi.2001.280.3.G361.
10
Cholecystokinin and satiety: current perspectives.
Nutrition. 2000 Oct;16(10):858-65. doi: 10.1016/s0899-9007(00)00419-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验