Suppr超能文献

多变量选择性作为一种用于评估经化学计量学峰去卷积处理的全二维气相色谱-飞行时间质谱的指标。

Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry subjected to chemometric peak deconvolution.

作者信息

Sinha Amanda E, Hope Janiece L, Prazen Bryan J, Fraga Carlos G, Nilsson Erik J, Synovec Robert E

机构信息

Department of Chemistry, Center for Process Analytical Chemistry, University of Washington, P. O. Box 351700, Seattle, WA 98195-1700, USA.

出版信息

J Chromatogr A. 2004 Nov 12;1056(1-2):145-54.

Abstract

Two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC x GC-TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC x GC-TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC x GC-TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC x GC-TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC x GC-TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC x GC-TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.

摘要

二维气相色谱(GC×GC)与飞行时间质谱(TOFMS)联用[GC×GC - TOFMS]是一种高度选择性的技术,非常适合分析复杂混合物。所生成的数据信息丰富,适用于多变量定量分析和模式识别。在GC×GC - TOFMS上进行一次分离可提供两根色谱柱上的保留时间以及混合物中各组分的完整质谱图。在本报告中,我们展示了GC×GC - TOFMS与三线化学计量技术相结合,特别是由三线分解(TLD)启动的平行因子分析(PARAFAC),如何形成一种强大的多变量去卷积分析方法。使用PARAFAC,复杂混合物中部分分离的组分无需标准数据集、信号形状假设或任何完全选择性的质谱信号即可进行去卷积和鉴定。使用一组四种异构体(异丁基苯、仲丁基苯、叔丁基苯和正丁基苯)来研究PARAFAC在不同色谱分辨率和质谱选择性下对异构体去卷积的实际局限性。在本报告中,多变量选择性作为评估经PARAFAC峰去卷积的GC×GC - TOFMS数据的指标进行了测试。发现多变量选择性超过0.18时去卷积结果最佳。此外,还展示了GC×GC - TOFMS随后进行TLD/PARAFAC在植物代谢物样品中的应用。使用TLD/PARAFAC分析了来自智利惠尔莫(Sisyrinchium striatum)衍生化代谢植物提取物的复杂天然样品的GC×GC - TOFMS数据区域,证明了该分析技术在含有重叠分析物且无选择性离子或峰形假设的天然样品上的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验