Fitz Brian D, Synovec Robert E
Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
Anal Chim Acta. 2016 Mar 24;913:160-70. doi: 10.1016/j.aca.2016.01.045. Epub 2016 Jan 30.
Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc ∼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs ∼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.
报道了一种用于高速气相色谱和飞行时间质谱(GC - TOFMS)的数据缩减与可视化方法的实施情况。该方法称为“二维m/z聚类法”,通过使用快速TOFMS采样频率(500 Hz)精确测量峰宽和保留时间,有助于分析物的检测、去卷积和鉴定。考虑了高速气相色谱的特点和要求:具有窄峰宽和高峰容量的快速分离、快速的数据采集速率以及有效的峰去卷积。从标准气相色谱(10 - 60多分钟的分离时间)过渡到快速气相色谱(1 - 10分钟的分离时间)需要考虑如何正确分析数据。本报告验证了二维m/z聚类法与新开发的气相色谱技术的联用,该技术能实现超快速分离(约1分钟)且分析物峰宽窄。低热容气相色谱(LTM - GC)以250℃/分钟的升温速率运行,并与LECO Pegasus III TOFMS联用,在120秒内分析了一种115组分的测试混合物,其峰底宽wb(4σ)平均为350毫秒,实现了具有高峰容量的分离,nc约为340(在单位分辨率Rs = 1时)。二维m/z聚类法能够将重叠的分析物分离至极限Rs约为0.03,因此在120秒的分离中有效峰容量增加了近30倍,达到nc约为10,000。该方法与LTM - GC - TOFMS联用时,通过可视化纯m/z和色谱重叠m/z的位置,能够提供明确的峰排序(即总离子流(TIC)中每个重叠峰的分析物数量)。因此,展示了使用MCR - ALS(多元曲线分辨 - 交替最小二乘法)进行峰去卷积和鉴定的过程。