Stumpf Walter E
University of North Carolina at Chapel Hill, NC, USA.
J Pharmacol Toxicol Methods. 2005 Jan-Feb;51(1):25-40. doi: 10.1016/j.vascn.2004.09.001.
This review is an argument in favor of better drug target identification. It presents the many merits and feasibilities of drug localization and target identification through the use of a suitable technique: receptor microautoradiography. Studies of drug targets and target bioavailability require methods with high resolution and sensitivity to gain information for understanding mechanisms of action, sound modeling, prediction of effects, and toxicity. For in vivo localization of drugs in tissues and cells, receptor microautoradiography was specifically designed to preserve both tissue structure and deposition of noncovalently bound diffusible compounds and to enable microscopic viewing, quantitative analysis, and characterization of target sites. This method and its applications are explained here. Pictorial and quantitative data are provided together with a discussion of identified targets that document the utility of receptor microautoradiography. For example, when applied to quantitative studies of vitamin D compounds, pharmacokinetic data of blood differed from those of target tissues and even among target tissues. Many of the target tissues discovered and characterized with receptor microautoradiography remained unrecognized with common ADME procedures, radioassay-HPLC, and whole-body autoradiography. For a visual overview of the multiple vitamin D targets, a drug homunculus has been composed. Such a drug or target homunculus may be created for any drug, dose, and time to aid in documenting and fingerprinting. Receptor microautoradiography also is a sensitive method. It can be used for the study of low-dose stimulatory actions of toxic substances to show relationships of receptor binding to dose-dependent reversal of effects, known as hormesis. In addition, a combination of autoradiography and immunocytochemistry with radiolabeled drug and antibodies to receptor or other cellular product permits further target characterization. In its own league, receptor microautoradiography provides unique information. Through greater detail and certainty, it can validate and complement less-sensitive approaches, decrease the failure rates of current ADMET predictions, and serve as a diagnostic tool and guide for biochemical, functional, and clinical follow-up in drug research and development.
本综述旨在支持更好地进行药物靶点识别。它阐述了通过使用一种合适的技术——受体显微放射自显影术来进行药物定位和靶点识别的诸多优点及可行性。药物靶点和靶点生物利用度的研究需要具有高分辨率和灵敏度的方法,以便获取信息来理解作用机制、进行合理建模、预测效果和毒性。对于药物在组织和细胞中的体内定位,受体显微放射自显影术专门设计用于保留组织结构以及非共价结合的可扩散化合物的沉积,并能够对靶点进行显微镜观察、定量分析和表征。本文将解释这种方法及其应用。文中提供了图片和定量数据,并讨论了已识别的靶点,这些都证明了受体显微放射自显影术的实用性。例如,当应用于维生素D化合物的定量研究时,血液的药代动力学数据与靶组织的不同,甚至在不同靶组织之间也存在差异。许多通过受体显微放射自显影术发现和表征的靶组织,用常规的药物代谢动力学(ADME)程序、放射测定 - 高效液相色谱法(radioassay - HPLC)和全身放射自显影术却无法识别。为了直观呈现多种维生素D靶点,构建了一个药物小人模型。对于任何药物、剂量和时间,都可以创建这样的药物或靶点小人模型,以帮助记录和识别特征。受体显微放射自显影术也是一种灵敏的方法。它可用于研究有毒物质的低剂量刺激作用,以显示受体结合与剂量依赖性效应逆转之间的关系,即兴奋效应。此外,放射自显影术与免疫细胞化学相结合,使用放射性标记药物以及针对受体或其他细胞产物的抗体,可进一步对靶点进行表征。在其自身领域,受体显微放射自显影术提供了独特的信息。通过更详细和准确的信息,它可以验证和补充不太灵敏的方法,降低当前药物代谢、转运、吸收、分布、排泄及毒性(ADMET)预测的失败率,并作为药物研发中生化、功能和临床后续研究的诊断工具和指南。