De Rumi, Maybhate Anil, Ananthakrishna G
Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046223. doi: 10.1103/PhysRevE.70.046223. Epub 2004 Oct 29.
We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. We derive the equations of motion for the angular speed of the roller tape, the peel angle and the pull force used in earlier investigations using a Lagrangian. Due to the constraint between the pull force, peel angle and the peel force, it falls into the category of differential-algebraic equations requiring an appropriate algorithm for its numerical solution. Using such a scheme, we show that stick-slip jumps emerge in a purely dynamical manner. Our detailed numerical study shows that these set of equations exhibit rich dynamics hitherto not reported. In particular, our analysis shows that inertia has considerable influence on the nature of the dynamics. Following studies in the Portevin-Le Chatelier effect, we suggest a phenomenological peel force function which includes the influence of the pull speed. This reproduces the decreasing nature of the rupture force with the pull speed observed in experiments. This rich dynamics is made transparent by using a set of approximations valid in different regimes of the parameter space. The approximate solutions capture major features of the exact numerical solutions and also produce reasonably accurate values for the various quantities of interest.
我们研究了以恒定拉伸速度拉伸胶带时的剥离动力学。我们使用拉格朗日方法推导了早期研究中用于描述胶带辊角速度、剥离角和拉力的运动方程。由于拉力、剥离角和剥离力之间的约束,它属于需要适当算法进行数值求解的微分代数方程类别。使用这样的方案,我们表明粘滑跳跃以纯粹的动力学方式出现。我们详细的数值研究表明,这组方程展现出迄今未被报道的丰富动力学。特别是,我们的分析表明惯性对动力学性质有相当大的影响。继对Portevin-Le Chatelier效应的研究之后,我们提出了一个包含拉伸速度影响的唯象剥离力函数。这再现了实验中观察到的断裂力随拉伸速度降低的特性。通过使用在参数空间不同区域有效的一组近似,这种丰富的动力学变得清晰明了。近似解捕捉了精确数值解的主要特征,并且还为各种感兴趣的量产生了相当准确的值。