Suppr超能文献

通过光束分裂和辐射实现具有吸引势的二维非线性薛定谔方程中的光束稳定化。

Beam stabilization in the two-dimensional nonlinear Schrödinger equation with an attractive potential by beam splitting and radiation.

作者信息

leMesurier Brenton John, Christiansen Peter Leth, Gaididei Yuri B, Rasmussen Jens Juul

机构信息

Department of Mathematics, College of Charleston, Charleston, South Carolina 29424, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046614. doi: 10.1103/PhysRevE.70.046614. Epub 2004 Oct 28.

Abstract

The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrödinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrödinger equation in the critical dimension 2 and can lead to a stable oscillating beam. This is observed to involve a splitting of the beam into an inner part that is oscillatory and of subcritical power and an outer dispersing part. An analysis is given in terms of the rate competition between the linear and nonlinear focusing effects, radiation losses, and known stable periodic behavior of certain solutions in the presence of attractive potentials.

摘要

考虑了吸引性线性势对由非线性薛定谔方程建模的自聚焦入射波的影响。结果表明,吸引性势可以防止在临界维度2的立方薛定谔方程中普遍存在的奇异坍缩和色散,并能导致稳定的振荡光束。据观察,这涉及到光束分裂为一个内部振荡且功率低于临界值的部分和一个外部色散部分。根据线性和非线性聚焦效应、辐射损耗之间的速率竞争以及在存在吸引性势时某些解的已知稳定周期行为进行了分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验