Trebst Simon, Huse David A, Troyer Matthias
Theoretische Physik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046701. doi: 10.1103/PhysRevE.70.046701. Epub 2004 Oct 4.
We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized broad-histogram Monte Carlo simulation to maximize the system's rate of round trips in total energy. The scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update method is found to be O ( N ln N ) for both the ferromagnetic and the fully frustrated two-dimensional Ising model with N spins. Our algorithm thereby substantially outperforms flat-histogram methods such as the Wang-Landau algorithm.
我们提出了一种自适应算法,该算法在广义宽直方图蒙特卡罗模拟中优化统计力学系综,以最大化系统在总能量中的往返速率。对于具有N个自旋的铁磁和完全受挫二维伊辛模型,发现这种局部更新方法从基态到最大熵态的平均往返时间的标度为O(N ln N)。因此,我们的算法大大优于诸如Wang-Landau算法之类的平直方图方法。