Wu Yong, Körner Mathias, Colonna-Romano Louis, Trebst Simon, Gould Harvey, Machta Jonathan, Troyer Matthias
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-3720, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046704. doi: 10.1103/PhysRevE.72.046704. Epub 2005 Oct 4.
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogram Monte Carlo methods with single-spin flip updates such as the Wang-Landau algorithm or the multicanonical method perform suboptimally in comparison to an unbiased Markovian random walk in energy space. For the d = 1, 2, 3 Ising model, the mean first-passage time tau scales with the number of spins N = L(d) as tau proportional N2L(z). The exponent z is found to decrease as the dimensionality d is increased. In the mean-field limit of infinite dimensions we find that z vanishes up to logarithmic corrections. We then demonstrate how the slowdown characterized by z > 0 for finite d can be overcome by two complementary approaches--cluster dynamics in connection with Wang-Landau sampling and the recently developed ensemble optimization technique. Both approaches are found to improve the random walk in energy space so that tau proportional N2 up to logarithmic corrections for the d = 1, 2 Ising model.
我们通过确定跨越d维铁磁伊辛/波茨模型整个能量空间的平均首次通过时间,研究了对能量中的宽直方图进行采样的蒙特卡罗模拟的性能。我们首先表明,与能量空间中的无偏马尔可夫随机游走相比,诸如王 - 兰道算法或多正则方法等采用单自旋翻转更新的平直方图蒙特卡罗方法表现欠佳。对于d = 1、2、3的伊辛模型,平均首次通过时间τ与自旋数N = L(d)的关系为τ∝N²L(z)。发现指数z随着维度d的增加而减小。在无限维的平均场极限中,我们发现z直到对数修正都消失了。然后我们证明了对于有限的d,由z > 0表征的减速如何可以通过两种互补的方法来克服——与王 - 兰道采样相关的团簇动力学和最近开发的系综优化技术。发现这两种方法都改善了能量空间中的随机游走,使得对于d = 1、2的伊辛模型,τ∝N²直到对数修正。