Suppr超能文献

清醒大鼠大脑中的神经胶质细胞代谢:二氧化碳固定随大脑活动增加。

Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity.

作者信息

Oz Gülin, Berkich Deborah A, Henry Pierre-Gilles, Xu Yuping, LaNoue Kathryn, Hutson Susan M, Gruetter Rolf

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Neurosci. 2004 Dec 15;24(50):11273-9. doi: 10.1523/JNEUROSCI.3564-04.2004.

Abstract

Glial cells are thought to supply energy for neurotransmission by increasing nonoxidative glycolysis; however, oxidative metabolism in glia may also contribute to increased brain activity. To study glial contribution to cerebral energy metabolism in the unanesthetized state, we measured neuronal and glial metabolic fluxes in the awake rat brain by using a double isotopic-labeling technique and a two-compartment mathematical model of neurotransmitter metabolism. Rats (n = 23) were infused simultaneously with 14C-bicarbonate and [1-13C]glucose for up to 1 hr. The 14C and 13C labeling of glutamate, glutamine, and aspartate was measured at five time points in tissue extracts using scintillation counting and 13C nuclear magnetic resonance of the chromatographically separated amino acids. The isotopic 13C enrichment of glutamate and glutamine was different, suggesting significant rates of glial metabolism compared with the glutamate-glutamine cycle. Modeling the 13C-labeling time courses alone and with 14C confirmed significant glial TCA cycle activity (V(PDH)((g)), approximately 0.5 micromol x gm(-1) x min(-1)) relative to the glutamate-glutamine cycle (V(NT)) (approximately 0.5-0.6 micromol x gm(-1) x min(-1)). The glial TCA cycle rate was approximately 30% of total TCA cycle activity. A high pyruvate carboxylase rate (V(PC), approximately 0.14-0.18 micromol x gm(-1) x min(-1)) contributed to the glial TCA cycle flux. This anaplerotic rate in the awake rat brain was severalfold higher than under deep pentobarbital anesthesia, measured previously in our laboratory using the same 13C-labeling technique. We postulate that the high rate of anaplerosis in awake brain is linked to brain activity by maintaining glial glutamine concentrations during increased neurotransmission.

摘要

神经胶质细胞被认为通过增加非氧化糖酵解为神经传递提供能量;然而,神经胶质细胞中的氧化代谢也可能有助于增加大脑活动。为了研究在未麻醉状态下神经胶质细胞对脑能量代谢的贡献,我们使用双同位素标记技术和神经递质代谢的双室数学模型,测量了清醒大鼠大脑中神经元和神经胶质细胞的代谢通量。给23只大鼠同时输注14C-碳酸氢盐和[1-13C]葡萄糖,持续1小时。使用闪烁计数法和色谱分离氨基酸的13C核磁共振法,在五个时间点测量组织提取物中谷氨酸、谷氨酰胺和天冬氨酸的14C和13C标记。谷氨酸和谷氨酰胺的13C同位素富集不同,表明与谷氨酸-谷氨酰胺循环相比,神经胶质细胞代谢速率显著。单独对13C标记时间进程建模以及结合14C建模均证实,相对于谷氨酸-谷氨酰胺循环(V(NT))(约0.5-0.6 μmol·g-1·min-1),神经胶质细胞三羧酸循环活性显著(V(PDH)((g)),约0.5 μmol·g-1·min-1)。神经胶质细胞三羧酸循环速率约占总三羧酸循环活性的30%。高丙酮酸羧化酶速率(V(PC),约0.14-0.18 μmol·g-1·min-1)有助于神经胶质细胞三羧酸循环通量。使用相同的13C标记技术,我们实验室之前测量发现,清醒大鼠大脑中的这种回补速率比深度戊巴比妥麻醉下的回补速率高几倍。我们推测,清醒大脑中高回补速率通过在神经传递增加期间维持神经胶质细胞谷氨酰胺浓度与大脑活动相关联。

相似文献

引用本文的文献

7
Brain energy metabolism: A roadmap for future research.脑能量代谢:未来研究的路线图。
J Neurochem. 2024 May;168(5):910-954. doi: 10.1111/jnc.16032. Epub 2024 Jan 6.
9
Glial Glutamine Homeostasis in Health and Disease.健康与疾病中的胶质谷氨酰胺稳态
Neurochem Res. 2023 Apr;48(4):1100-1128. doi: 10.1007/s11064-022-03771-1. Epub 2022 Nov 2.

本文引用的文献

7
Cerebral metabolism and consciousness.脑代谢与意识
C R Biol. 2003 Mar;326(3):253-73. doi: 10.1016/s1631-0691(03)00071-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验